25 resultados para Marcel Duchamp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Convergent evidence implicates white matter abnormalities in bipolar disorder. The cingulum is an important candidate structure for study in bipolar disorder as it provides substantial white matter connections within the corticolimbic neural system that subserves emotional regulation involved in the disorder. Aims To test the hypothesis that bipolar disorder is associated with abnormal white matter integrity in the cingulum. Method Fractional anisotropy in the anterior and posterior cingulum was compared between 42 participants with bipolar disorder and 42 healthy participants using diffusion tensor imaging. Results Fractional anisotropy was significantly decreased in the anterior cingulum in the bipolar disorder group compared with the healthy group (P=0.003); however, fractional anisotropy in the posterior cingulum did not differ significantly between groups. Conclusions Our findings demonstrate abnormalities in the structural integrity of the anterior cingulum in bipolar disorder. They extend evidence that supports involvement of the neural system comprising the anterior cingulate cortex and its corticolimbic gray matter connection sites in bipolar disorder to implicate abnormalities in the white matter connections within the system provided by the cingulum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrary to expectations derived from preclinical studies of the effects of stress, and imaging studies of adults with posttraumatic stress disorder (PTSD), there is no evidence of hippocampus atrophy in children with PTSD. Multiple pediatric studies have reported reductions in the corpus callosum - the primary white matter tract in the brain. Consequently, in the present study, diffusion tensor imaging was used to assess white matter integrity in the corpus callosum in 17 maltreated children with PTSD and 15 demographically matched normal controls. Children with PTSD had reduced fractional anisotropy in the medial and posterior corpus, a region which contains interhemispheric projections from brain structures involved in circuits that mediate the processing of emotional stimuli and various memory functions - core disturbances associated with a history of trauma. Further exploration of the effects of stress on the corpus callosum and white matter development appears a promising strategy to better understand the pathophysiology of PTSD in children. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop a fast capillary electrophoresis method for the determination of inorganic cations (Na(+), K(+), Ca(2+), Mg(2+)) in biodiesel samples, using barium (Ba(2+)) as the internal standard. The running electrolyte was optimized through effective mobility curves in order to select the co-ion and Peakmaster software was used to determine electromigration dispersion and buffer capacity. The optimum background electrolyte was composed of 10 mmol L(-1) imidazole and 40 mmol L(-1) of acetic acid. Separation was conducted in a fused-silica capillary (32 cm total length and 23.5 cm effective length, 50 mu m I.D.), with indirect UV detection at 214 nm. The migration time was only 36 s. In order to obtain the optimized conditions for extraction, a fractional factorial experimental design was used. The variables investigated were biodiesel mass, pH, extractant volume, agitation and sonication time. The optimum conditions were: biodiesel mass of 200 mg, extractant volume of 200 mu L. and agitation of 20 min. The method is characterized by good linearity in the concentration range of 0.5-20 mg kg(-1) (r > 0.999), limit of detection was equal to 0.3 mg kg(-1), inter-day precision was equal to 1.88% and recovery in the range of 88.0-120%. The developed method was successfully applied to the determination of cations in biodiesel samples. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop a fast capillary electrophoresis method for the determination of propranolol in pharmaceutical preparations. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. Benzylamine was used as the internal standard. The background electrolyte was composed of 60 mmol L(-1) tris(hydroxymethyl)aminomethane and 30 mmol L(-1) 2-hydroxyisobutyric acid,at pH 8.1. Separation was conducted in a fused-silica capillary (32 cm total length and 8.5 cm effective length, 50 mu m I.D.) with a short-end injection configuration and direct UV detection at 214 nm. The run time was only 14 s. Three different strategies were studied in order to develop a fast CE method with low total analysis time for propranolol analysis: low flush time (Lflush) 35 runs/h, without flush (Wflush) 52 runs/h, and Invert (switched polarity) 45 runs/h. Since the three strategies developed are statistically equivalent, Mush was selected due to the higher analytical frequency in comparison with the other methods. A few figures of merit of the proposed method include: good linearity (R(2) > 0.9999); limit of detection of 0.5 mg L(-1): inter-day precision better than 1.03% (n = 9) and recovery in the range of 95.1-104.5%. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of bovine serum albumin (BSA) with the ionic surfactants sodium dodecylsulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) was studied by electron paramagnetic resonance (EPR) spectroscopy of spin label covalently bound to the single free thiol group of the protein. EPR spectra simulation allows to monitor the protein dynamics at the labeling site and to estimate the changes in standard Gibbs free energy, enthalpy and entropy for transferring the nitroxide side chain from the more motionally restricted to the less restricted component. Whereas SDS and CTAC showed similar increases in the dynamics of the protein backbone for all measured concentrations. HPS presented a smaller effect at concentrations above 1.5 mM. At 10 mM of surfactants and 0.15 mM BSA, the standard Gibbs free energy change was consistent with protein backbone conformations more expanded and exposed to the solvent as compared to the native protein, but with a less pronounced effect for HPS. In the presence of the surfactants, the enthalpy change, related to the energy required to dissociate the nitroxide side chain from the protein, was greater, suggesting a lower water activity. The nitroxide side chain also detected a higher viscosity environment in the vicinity of the paramagnetic probe induced by the addition of the surfactants. The results suggest that the surfactant-BSA interaction, at higher surfactant concentration, is affected by the affinities of the surfactant to its own micelles and micelle-like aggregates. Complementary DLS data suggests that the temperature induced changes monitored by the nitroxide probe reflects local changes in the vicinity of the single thiol group of Cys-34 BSA residue. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work focuses on the interaction between the zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp). Electronic optical absorption, fluorescence emission and circular dichroism spectroscopy techniques, together with Gel-filtration chromatography, were used in order to evaluate the oligomeric dissociation as well as the autoxidation of HbGp as a function of the interaction with HPS. A peculiar behavior was observed for the HPS-HbGp interaction: a complex ferric species formation equilibrium was promoted, as a consequence of the autoxidation and oligomeric dissociation processes. At pH 7.0, HPS is more effective up to 1 mM while at pH 9.0 the surfactant effect is more intense above 1 mM. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to two factors: (i) the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants, and (ii) the low cmc of HPS, which probably reduces the interaction of the surfactant in the monomeric form with the protein. The present work emphasizes the importance of the electrostatic contribution in the interaction between ionic surfactants and HbGp. Furthermore, in the whole HPS concentration range used in this study, no folding and autoxidation decrease induced by this surfactant were observed. This is quite different from the literature data on the interaction between surfactants and tetrameric hemoglobins, that supports the occurrence of this behavior for the intracellular hemoglobins at low surfactant concentration range. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on their structure-activity relationship. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) has a molecular mass (M) of 3600 +/- 100 kDa and a standard sedimentation coefficient (s(20.w)(0)) of 58 S. estimated by analytical ultracentrifugation (AUC). In the present work, further AUC studies were developed for HbGp, at pH 10.0, which favors oligomeric dissociation into lower M species. The HbGp oligomer is formed by globin chains a, b, c and d plus the linker chains. The pure monomeric fraction, subunit d, and HbGp at pH 10.0, in the presence of beta-mercaptoethanol, were also studied. Our results indicate that for samples of pure subunit d, besides the monomeric species with s(20.w)(0) of 2.0 S, formation of dimer of subunit d is observed with s(20.w)(0) of around 2.9 S. For the whole HbGp at pH 10.0 contributions from monomers, trimers and linkers are observed. No contribution from 58 S species was observed for the sample of oxy-HbGp at pH 10.0, showing its complete dissociation. For cyanomet-HbGp form a contribution of 17% is observed for the un-dissociated oligomer, consistent with data from other techniques that show the cyanomet-form is more stable as compared to oxy-HbGp. Masses of HbGp subunits, especially trimer abc and monomeric chains a, b, c and d, were also estimated from sedimentation equilibrium data, and are in agreement with the results from MALDI-TOF-MS. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EPR spectra of 5- and 16-doxyl stearic acid nitroxide probes (5-DSA and 16-DSA, respectively) bound to bovine serum albumin (BSA) revealed that in the presence of ionic surfactants, at least, two label populations coexist in equilibrium. The rotational correlation times (tau) indicated that component I displays a more restricted mobility state, associated to the spin labels bound to the protein; the less immobilized component 2 is due to label localization in the surfactant aggregates. For both probes, the increase of surfactant concentration leads to higher motional levels of component 1 followed by a simultaneous decrease of this fraction of nitroxides and its conversion into component 2. For 10 mM cethyltrimethylammonium chloride (CTAC), the nitroxides are 100% bound to the protein, whereas at 10mM N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and sodium dodecyl sulfate (SDS) the fractions of bound nitroxides are reduced to 18% and 86%, respectively. No significant polarity changes were observed in the whole surfactant concentration range for component 1. Moreover, at higher surfactant concentration, component 2 exhibited a similar polarity as in the pure surfactant micelles. For 16-DSA the surfactant effect is different: at 10mM of HPS and CTAC the fractions of bound nitroxides are 76% and 49%, respectively, while at 10 mM SDS they are present exclusively in a micellar environment, consistent with 100% of component 2. Overall, both SDS and HPS are able to effectively displace the nitroxide probes from the protein binding sites. while CTAC seems to affect the nitroxide binding to a significantly smaller extent. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by Subunits containing heme groups with molecular masses (M) in the range of 15 to 19 kDa, monomers of 16 kDa (d), and trimers of 51 to 52 kDa (abc) linked by nonheme structures named linkers of 24 to 32 kDa (L). HbGp is homologous to Lumbricus terrestris hemoglobin (HbLt). Several reports propose M of HbLt in the range of 3.6 to 4.4 MDa. Based on subunits M determined by mass spectrometry and assuming HbGp stoichiometry of 12(abcd)(3)L(3) (Vinogradov model) plus 144 heme groups, a Value of M for HbGp oligomer of 3560 kDa can be predicted. This Value is nearly 500 kDa higher than the unique HbGp M Value reported in the literature. In the current work, sedimentation velocity analytical ultracentrifugation (AUC) experiments were performed to obtain M for HbGp in oxy and cyano-met forms. s(20,w)(0), values of 58.1 +/- 0.2 S and 59.6 +/- 0.2 S, respectively, for the two oxidation forms were obtained. The ratio between sedimentation and diffusion coefficients supplied values for M of approximately 3600 100 and 3700 100 kDa for oxy and cyano-met HbGp forms, respectively. An independent determination of the partial specific volume, V(bar), for HbGp was performed based on density measurements, providing a value of 0.764 +/- 0.008, in excellent agreement with the estimates from SEDFIT software. Our results show total consistency between M obtained by AUC and recent partial characterization by mass spectrometry. Therefore, HbGp possesses M very close to that of HbLt, suggesting an oligomeric assembly in agreement with the Vinogradov model. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS), optical absorption spectroscopy (UV-VIS) and differential scanning calorimetry (DSC). At pH 7.0, cyanomet-HbGp is very stable, no oligomeric dissociation is observed, while denaturation occurs at 56 degrees C, 4 degrees C higher as compared to oxy-HbGp. The oligomeric dissociation of HbGp occurs simultaneously with some protein aggregation. Kinetic studies for oxy-HbGp using UV-VIS and DES allowed to obtain activation energy (E(a)) values of 278-262 kJ/mol (DES) and 333 kJ/mol (UV-VIS). Complimentary DSC studies indicate that the denaturation is irreversible, giving endotherms strongly dependent upon the heating scan rates, suggesting a kinetically controlled process. Dependence on protein concentration suggests that the two components in the endotherms are due to oligomeric dissociation effect upon denaturation. Activation energies are in the range 200-560 kJ/mol. The mid-point transition temperatures were in the range 50-65 degrees C. Cyanomet-HbGp shows higher mid-point temperatures as well as activation energies, consistent with its higher stability. DSC data are reported for the first time for an extracellular hemoglobin. (C) 2010 Elsevier B.V. All rights reserved.