52 resultados para MODIFIED PT(111) ELECTRODES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanostructured films comprising a 3-n-propylpyridiniunn silsesquioxane polymer (designated as SiPy(+)Cl(-)) and copper (II) tetrasulfophthalocyanine (CuTsPc) were produced using the Layer-by-Layer technique (LbL). To our knowledge this is the first report on the use of silsesquioxane derivative polymers as building blocks for nanostructured thin films fabrication. Deposition of the multilayers were monitored by UV-Vis spectroscopy revealing the linear increment in the absorbance of the Q-band from CuTsPc at 617 nm with the number of SiPy(+)Cl(-)/CuTsPc or CuTsPc/SiPy(+)Cl(-) bilayers. FTIR analyses showed that specific interactions between SiPy+Cl- and CuTsPc occurred between SO(3)(-) groups of tetrasulfophthalocyanine and the pyridinium groups of the polycation. Morphological studies were carried out using the AFM technique, which showed that the roughness and thickness of the films increase with the number of bilayers. The films displayed electroactivity and were employed to detection of dopamine (DA) and ascorbic acid (AA) using cyclic voltammetry, at concentrations ranging from 1.96 x 10(-4) to 1.31 x 10(-3) molL(-1). The number and the sequence of bilayers deposition influenced the electrochemical response in presence of DA and AA. Using differential pulse technique, films comprising SiPy(+)/CuTsPc were able to distinguish between DA and ascorbic acid (AA), with a potential difference of approximately with 500 mV, in the concentration range of 9.0 x 10(-5) to 2.0 x 10(-4) molL(-1), in pH 3.0.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A fast and robust analytical method for amperometric determination of hydrogen peroxide (H(2)O(2)) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H(2)O(2) amperometric determination in the concentration range from 0.8 mu mol L(-1) to 100 mu mol L(-1). The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 mu mol L(-1) (3 sigma). The anodic current peaks obtained after a series of 23 successive injections of 50 mu L of 25 mu mol L(-1) H(2)O(2) showed an RSD < 0.9%. To ensure the good selectivity to detect H(2)O(2), its determination was performed in a differential mode, with selective destruction of the H(2)O(2) with catalase in 10 mmol L(-1) phosphate buffer solution. Practical application of the analytical procedure involved H(2)O(2) determination in rainwater of Sao Paulo City. A comparison of the results obtained by the proposed ampermetric method with another one which combines flow injection analysis (FIA) with spectrophotometric detection showed good agreement. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Copper hexacyanoferrate nanoparticles of about 30 nm in size have been prepared by the sonochemical irradiation of a mixture of aqueous potassium ferricyanide and copper chloride solutions. The nanoparticles were immobilized onto fluorine doped tin oxide (FTO) electrodes by using the electrostatic deposition layer-by-layer technique (LbL), obtaining electroactive films with electrocatalytic properties towards H2O2 reduction, providing higher currents than those observed for electrodeposited bulk material, even in electrolytes containing NH4+, Na+ and K+. The nanoparticles assembly was used as mediator in a glucose biosensor by immobilizing glucose oxidase enzyme by both, cross-linking and LbL. techniques. Sensitivities obtained were dependent on the immobilization method ranging from 1.23 mu A mmol(-1) L cm(-2) for crosslinking to 0.47 mu A mmol(-1) L cm(-2) for LbL; these values being of the same order than those obtained with electrodes where the amount of enzyme used is much higher. Moreover, the linear concentration range where the biosensors can operate was 10 times higher for electrodes prepared with the LbL immobilization method than with the conventional crosslinking one. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flow injection analysis (FIA) with amperometric detection was employed for the quantification of N-acetylcysteine (NAC) in pharmaceutical formulations, utilizing an ordinary pyrolytic graphite (OPG) electrode modified with cobalt phthalocyanine (CoPc). Cyclic voltammetry was used in preliminary studies to establish the best conditions for NAC analysis. In FIA-amperometric experiments the OPG-CoPc electrode exhibited sharp and reproducible current peaks over a wide linear working range (5.0 x 10(-5)-1.0 x 10(-3) mol L(-1)) in 0.1 mol L(-1) NaOH solution. High sensitivity (130 mA mol(-1) cm(2)) and a low detection limit (9.0 x 10(-7) mol L(-1)) were achieved using the sensor. The repeatability (R.S.D.%) for 13 successive flow injections of a solution containing 5.0 x 10(-4) mol L(-1) NAC was 1.1%. The new procedure was applied in analyses of commercial pharmaceutical products and the results were in excellent agreement with those obtained using the official titrimetric method. The proposed amperometric method is highly suitable for quality control analyses of NAC in pharmaceuticals since it is rapid, precise and requires much less work than the recommended titrimetric method. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the development, electrochemical characterization and utilization of a cobalt phthalocyanine modified carbon nanotube electrode for the quantitative determination of dopamine in 0.2 mol L-1 phosphate buffer contaminated with high concentration of ascorbic acid. The electrode surface was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy which showed a modified surface presenting a charge transfer resistance of 500 Omega, against the 16.46 k Omega value found for the bare glassy carbon surface. A pseudo rate constant value of 5.4 x 10(-4) cm s(-1) for dopamine oxidation was calculated. Voltammetric experiments showed a shift of the peak potential of DA oxidation to less positive value at 390 mV as compared with that of a bare GC electrode at 570 mV. The electrochemical determination of dopamine, in presence of ascorbic acid in concentrations up to 0.1 mol L-1 by differential pulse voltarnmetry, yielded a detection limit as low as 2.56 x 10(-7) mol L-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, Mg-Ni-based metastable alloys have been attracting attention due to their large hydrogen sorption capacities, low weight, low cost, and high availability. Despite the large discharge capacity and high activity of these alloys, the accelerated degradation of the discharge capacity after only few cycles of charge and discharge is the main shortcoming against their commercial use in batteries. The addition of alloying elements showed to be an effective way of improving the electrode performance of Mg-Ni-based alloys. In the present work, the effect of Ti and Pt alloying elements on the structure and electrode performance of a binary Mg-Ni alloy was investigated. The XRD and HRTEM revealed that all the investigated alloy compositions had multi-phase nanostructures, with crystallite size in the range of 6 nm. Moreover, the investigated alloying elements demonstrated remarkable improvements of both maximum discharge capacity and cycling life. Simultaneous addition of Ti and Pd demonstrated a synergetic effect on the electrochemical properties of the alloy electrodes. Among the investigated alloys, the best electrochemical performance was obtained for the Mg(51)Ti(4)Ni(43)Pt(2) composition (in at.%), which achieved 448 mAh g(-1) of maximum discharge capacity and retained almost 66% of this capacity after 10 cycles. In contrast, the binary Mg(55)Ni(45) alloy achieved only 248 mAh g(-1) and retained 11% of this capacity after 10 cycles. (C) 2010 Elsevier By. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A carbon-supported binary Pt(3)Sn catalyst has been prepared using a modified polymeric precursor method under controlled synthesis conditions This material was characterized using X-ray diffraction (XRD). and the results indicate that 23% (of a possible 25%) of Sn is alloyed with Pt, forming a dominant Pt(3)Sn phase. Transmission election microscopy (TEM) shows good dispersion of the electrocatalyst and small particle sizes (3 6 nm +/- 1 nm) The polarization curves for a direct ethanol fuel cell using Pt(3)Sn/C as the anode demonstrated Improved performance compared to that of a PtSn/C E-TEK. especially in the intrinsic resistance-controlled and mass transfer regions. This behavior is probably associated with the Pt(3)Sn phase. The maximum power density for the Pt(3)Sn/C electrocatalyst (58 mW cm(-2)) is nearly twice that of a PtSn/C E-TEK electrocatalyst (33 mW cm(-2)) This behavior is attributed to the presence of a mixed Pt(9)Sn and Pt(3)Sn alloy phase in the commercial catalysts (C) 2009 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three novel polymetallic ruthenium (III) meso-tetra(4-pyridyl)porphyrins containing peripheral ""RuCl(3)(dppb)"" moieties have been prepared and characterized. The X-ray structure of the tetraruthenated {NiTPyP[RuCl(3)(dppb)](4)} porphyrin complex crystallizes in the triclinic space group FT. This structure is discussed and compared with the crystal data for the mer-[RuCl(3)(dppb)(py)]. The {TPyP[RuCl(3)(dppb)](4)} and {CoTPyP[RuCl(3)(dppb)](4)} porphyrins were used to obtain electrogenerated films on ITO and glass carbon electrode surfaces, respectively. Such tetraruthenated porphyrins form films of a mixed-valence species {TPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2)(4n2+) and {CoTPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2n)(4n2+) on the electrode surface. The modified electrode with {CoTPyP[RuCl(3)(dppb)](4)} is very stable and can be used to detect organic substrates such as catechol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the development of a label free method to analyze the interactions between Ca(2+) and the porcine S100A12 protein immobilized on polyvinyl butyral (PVB). The modified gold electrodes were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface plasmon resonance (SPR) techniques. SEM analyses of PVB and PVB-S100A12 showed a heterogeneous distribution of PVB spherules on gold surface. EIS and CV measurements have shown that redox probe reactions on the modified gold electrodes were partially blocked due the adsorption of PVB-S100A12, and confirm the existence of a positive response of the immobilized S100Al2 to the presence of calcium ions. The biosensor exhibited a wide linear response to Ca(2+) concentrations ranging from 12.5 to 200 mM. The PVB-S100A12 seems to be bound to the gold electrode surface by physical adsorption: we observed an increase of 1184.32 m degrees in the SPR angle after the adsorption of the protein on the PVB surface (in an indication that 9.84 ng of S100A12 are adsorbed per mm(2) of the Au-PVB electrode), followed by a further increase of 581.66 m degrees after attachment of the Ca(2+) ions. In addition, no SPR response is obtained for non-specific ions. These studies might be useful as a platform for the design of new reusable and sensitive biosensing devices that could find use in the clinical applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A magnetically recoverable Pt(0) catalyst was prepared by in situ H(2) reduction of Pt(2+) species bound to an amino modified silica-coated magnetic nanoparticles. Compared to ordinary silica (maximum uptake Pt 0.03 wt%), the amino-functionalized silica surfaces were loaded with 1.95 wt% of metal. The supported Pt(0) nanoparticles exhibit high catalytic activity in the hydrogenation of alkenes and ketones under solventless mild reaction conditions. Partially hydrogenated products could also be isolated. The magnetic property of the catalyst grants a fast and efficient product isolation compared to traditional methods used in heterogeneous systems that generally make use of time- and solvent-consuming procedures. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen peroxide was determined in oral antiseptic and bleach samples using a flow-injection system with amperometric detection. A glassy carbon electrode modified by electrochemical deposition of ruthenium oxide hexacyanoferrate was used as working electrode and a homemade Ag/AgCl (saturated KCl) electrode and a platinum wire were used as reference and counter electrodes, respectively. The electrocatalytic reduction process allowed the determination of hydrogen peroxide at 0.0 V. A linear relationship between the cathodic peak current and concentration of hydrogen peroxide was obtained in the range 10-5000 mu mol L(-1) with detection and quantification limits of 1.7 (S/N = 3) and 5.9 (S/N = 10) mu mol L(-1), respectively. The repeatability of the method was evaluated using a 500 mu mol L(-1) hydrogen peroxide solution, the value obtained being 1.6% (n = 14). A sampling rate of 112 samples h(-1) was achieved at optimised conditions. The method was employed for the quantification of hydrogen peroxide in two commercial samples and the results were in agreement with those obtained by using a recommended procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrodeposition of bismuth on gold microelectrodes for determination of Pb(II) by square wave anodic stripping voltammetry (SWASV) was accomplished by an in situ procedure in alkaline solution. A linear calibration plot for Pb(II) in the concentration range 40 to 6700 nmol L(-1) (r=0.998) was obtained, the detection limit was found to be 12.5 nmol L(-1) (S/N = 3) and the relative standard deviation in Solutions containing 1 mu mol L(-1) Pb(II) was 4% (n = 12). The analytical performance of the proposed sensor wits tested by measuring the Pb(II) concentration in a wine sample. The result Was in good agreement with the one obtained by GFAAS.