57 resultados para Lyapunov exponents
Resumo:
Temperature-dependent electrical resistance in quasi-one-dimensional Li(0.9)Mo(6)O(17) is described by two Luttinger liquid anomalous exponents alpha, each associated with a distinct one dimensional band. The band with alpha < 1 is argued to crossover to a higher dimension below the temperature T(M'), leading to superconductivity. Disorder and magnetic fields are shown to induce the Bose metal behavior in this bulk compound.
Resumo:
The main goal of this paper is to establish some equivalence results on stability, recurrence, and ergodicity between a piecewise deterministic Markov process ( PDMP) {X( t)} and an embedded discrete-time Markov chain {Theta(n)} generated by a Markov kernel G that can be explicitly characterized in terms of the three local characteristics of the PDMP, leading to tractable criterion results. First we establish some important results characterizing {Theta(n)} as a sampling of the PDMP {X( t)} and deriving a connection between the probability of the first return time to a set for the discrete-time Markov chains generated by G and the resolvent kernel R of the PDMP. From these results we obtain equivalence results regarding irreducibility, existence of sigma-finite invariant measures, and ( positive) recurrence and ( positive) Harris recurrence between {X( t)} and {Theta(n)}, generalizing the results of [ F. Dufour and O. L. V. Costa, SIAM J. Control Optim., 37 ( 1999), pp. 1483-1502] in several directions. Sufficient conditions in terms of a modified Foster-Lyapunov criterion are also presented to ensure positive Harris recurrence and ergodicity of the PDMP. We illustrate the use of these conditions by showing the ergodicity of a capacity expansion model.
Resumo:
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
Resumo:
Context. The subject of asteroids in cometary orbits (ACOs) has been of growing interest lately. These objects have the orbital characteristics typical of comets, but are asteroidal in appearance, i.e., show no signs of a coma at any part of their orbits. At least a fraction of these objects are thought to be comets that have either exhausted all their volatile content or developed a refractory crust that prevents sublimation. In particular, the asteroid ( 5201) Ferraz-Mello has, since its discovery, been suspected to be an extinct Jupiter family comet due to the peculiar nature of its orbit. Aims. The aim of this work is to put constraints on the possible origin of ( 5201) Ferraz-Mello by means of spectroscopic characterization and a study of the dynamics of this asteroid. Methods. We used the SOAR Optical Imager (SOI) to obtain observations of ( 5201) Ferraz-Mello using four SDSS filters. These observations were compared to asteroids listed in the Sloan Moving objects catalog and also to photometry of cometary nuclei, Centaurs, and TNOs. The orbital evolution of ( 5201) Ferraz-Mello and of a sample of asteroids and comets that are close to that object in the a - e plane were simulated using a pure N-body code for 4 000 years forward and 4 000 years backward in time. Results. The reflectance spectrum obtained from its colors in the SDSS system is unusual, with a steep spectral gradient that is comparable to TNOs and Centaurs, but with an increase in the reflectance in the g band that is not common in those populations. A similar behavior is seen in cometary nuclei that were observed in the presence of a faint dust coma. The dynamical results confirm the very chaotic evolution found previously and its dynamical similarity to the chaotic evolution of some comets. The asteroid is situated in the very stochastic layer at the border of the 2/1 resonance, and it has a very short Lyapunov time ( 30 - 40) years. Together, the spectral characteristcs and the dynamical evolution suggest that ( 5201) Ferraz-Mello is a dormant or extinct comet.
Resumo:
In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3487516]
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
Resumo:
In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondonia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Angstrom exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70% of the absorption Angstrom exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Angstrom exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Angstrom exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Angstrom exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Angstrom exponents on 24-h aerosol forcings, at least in the spectral range of 450-880 nm. Further studies should be taken to assess the corresponding impact in the UV spectral range. The assumption that soot spectral properties represent all ambient light absorbing particles may cause a misjudgment of absorption towards the UV, especially in remote areas. Therefore, it is recommended to measure aerosol absorption at several wavelengths to accurately assess the impact of non-soot aerosols on climate and on photochemical atmospheric processes.
Resumo:
We revisit the scaling properties of a model for nonequilibrium wetting [Phys. Rev. Lett. 79, 2710 (1997)], correcting previous estimates of the critical exponents and providing a complete scaling scheme. Moreover, we investigate a special point in the phase diagram, where the model exhibits a roughening transition related to directed percolation. We argue that in the vicinity of this point evaporation from the middle of plateaus can be interpreted as an external field in the language of directed percolation. This analogy allows us to compute the crossover exponent and to predict the form of the phase transition line close to its terminal point.
Resumo:
Here we use magnetic resonant x-ray diffraction to study the magnetic order in a 1.5 mu m EuTe film grown on (111) BaF(2) by molecular-beam epitaxy. At Eu L(II) and L(III) absorption edges, a resonant enhancement of more than two orders was observed for the sigma ->pi(') diffracted intensity at half-order reciprocal-lattice points, consistent with the magnetic character of the scattering. We studied the evolution of the (1/21/21/2) magnetic reflection with temperature. When heating toward the Neel temperature (T(N)), the integrated intensity decreased monotonously and showed no hysteresis upon cooling again, indicating a second-order phase transition. A power-law fit to the magnetization versus temperature curve yielded T(N)=9.99(1) K and a critical exponent beta=0.36(1), which agrees with the renormalization theory results for three-dimensional Heisenberg magnets. The fits to the sublattice magnetization dependence with temperature, disregarding and considering fourth-order exchange interactions, evidenced the importance of the latter for a correct description of magnetism in EuTe. A value of 0.009 was found for the (2j(1)+j(2))/J(2) ratio between the Heisenberg J(2) and fourth-order j(1,2) exchange constants. The magnetization curve exhibited a round-shaped region just near T(N) accompanied by an increase in the magnetic peak width, which was attributed to critical scattering above T(N). The comparison of the intensity ratio between the (1/21/21/2) and the (1/21/21/2) magnetic reflections proved that the Eu(2+) spins align within the (111) planes, and the azimuthal dependence of the (1/21/21/2) magnetic peak is consistent with the model of equally populated S domains.
Resumo:
At zero temperature and strong applied magnetic fields the ground state of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical H(c2) and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hypercubic lattices under strong magnetic fields. We show that the transition at H(c2) can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl(2)-4SC(NH(2))(2) (DTN) at very low temperatures. This is the ideal BEC system to study this transition since H(c2) is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to H(c2) shows excellent agreement with the theoretical predictions. It allows us to obtain the quantum critical exponents and confirm the BEC nature of the transition at H(c2).
Resumo:
We study the spin-1/2 Ising model on a Bethe lattice in the mean-field limit, with the interaction constants following one of two deterministic aperiodic sequences, the Fibonacci or period-doubling one. New algorithms of sequence generation were implemented, which were fundamental in obtaining long sequences and, therefore, precise results. We calculate the exact critical temperature for both sequences, as well as the critical exponents beta, gamma, and delta. For the Fibonacci sequence, the exponents are classical, while for the period-doubling one they depend on the ratio between the two exchange constants. The usual relations between critical exponents are satisfied, within error bars, for the period-doubling sequence. Therefore, we show that mean-field-like procedures may lead to nonclassical critical exponents.
Resumo:
Stavskaya's model is a one-dimensional probabilistic cellular automaton (PCA) introduced in the end of the 1960s as an example of a model displaying a nonequilibrium phase transition. Although its absorbing state phase transition is well understood nowadays, the model never received a full numerical treatment to investigate its critical behavior. In this Brief Report we characterize the critical behavior of Stavskaya's PCA by means of Monte Carlo simulations and finite-size scaling analysis. The critical exponents of the model are calculated and indicate that its phase transition belongs to the directed percolation universality class of critical behavior, as would be expected on the basis of the directed percolation conjecture. We also explicitly establish the relationship of the model with the Domany-Kinzel PCA on its directed site percolation line, a connection that seems to have gone unnoticed in the literature so far.
Resumo:
Using the density matrix renormalization group, we investigate the Renyi entropy of the anisotropic spin-s Heisenberg chains in a z-magnetic field. We considered the half-odd-integer spin-s chains, with s = 1/2, 3/2, and 5/2, and periodic and open boundary conditions. In the case of the spin-1/2 chain we were able to obtain accurate estimates of the new parity exponents p(alpha)((p)) and p(alpha)((o)) that gives the power-law decay of the oscillations of the alpha-Renyi entropy for periodic and open boundary conditions, respectively. We confirm the relations of these exponents with the Luttinger parameter K, as proposed by Calabrese et al. [Phys. Rev. Lett. 104, 095701 (2010)]. Moreover, the predicted periodicity of the oscillating term was also observed for some nonzero values of the magnetization m. We show that for s > 1/2 the amplitudes of the oscillations are quite small and get accurate estimates of p(alpha)((p)) and p(alpha)((o)) become a challenge. Although our estimates of the new universal exponents p(alpha)((p)) and p(alpha)((o)) for the spin-3/2 chain are not so accurate, they are consistent with the theoretical predictions.
Resumo:
We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landau's theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single-and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.
Resumo:
Using path-integral Monte Carlo calculations, we have calculated ring exchange frequencies in the bcc phase of solid (3)He for densities from melting to the highest stable density. We evaluate 42 different exchange frequencies from two atoms up to eight atoms and find their Gruneisen exponents. Using a fit to these frequencies, we calculate the contribution to the Curie-Weiss temperature, Theta(CW), and upper critical magnetic field, B(c2), for even longer exchanges using a lattice Monte Carlo procedure. We find that contributions from seven-and eight-particle exchanges make a significant contribution to Theta(CW) and B(c2) at melting density. Comparison with experimental data is given.