23 resultados para Lithium salt


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionic liquids (ILs) 1-ethoxyethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [EtO-(CH(2))(2)MMI][Tf(2)N], and N-(ethoxyethyl)-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMor][Tf(2)N] were synthesized, and relevant properties, such as thermal stability, density, viscosity, electrochemical behavior, ionic conductivity, and self-diffusion coefficients for both ionic species, were measured and compared with those of their alkyl counterparts, 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [BMMI][Tf(2)N], and N-n-butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide,[BMP][Tf(2)N] and N-n-butyl-N-methylmorpholinium bis(trilfuoromethanesulfonyl)imide [BMMor][Tf(2)N][. This comparison was done to evaluate the effects caused by the presence of the ether bond in either the side chain or in the organic cation ring. The salt, LiTf(2)N, was added to the systems to estimate IL behavior with regard to lithium cation transport. Pure [EtO(CH(2))(2)MMI][Tf(2)N] and their LiTf(2)N solutions showed low viscosity and the highest conductivity among the ILs studied. The H(R) (AC conductivity/NMR calculated conductivity ratio) values showed that, after addition of LiTf(2)N, ILs containing the ether bond seemed to have a greater number of charged species. Structural reasons could explain these high observed HR values for [EtO(CH(2))(2)MMor][Tf(2)N].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling fluid`s contact with the productive zone of horizontal or complex wells can reduce well productivity by fluid invasion in the borehole wall. Salted drilling drill-in fluid containing polymers has often been applied in horizontal or complex petroleum wells in the poorly consolidated sandstone reservoirs of the Campos basin, Rio de Janeiro, Brazil. This fluid usually consists of natural polymers such as starch and xanthan gum, which are deposited as a filter cake on the wellbore wall during the drilling. Therefore, the identification of a lift-off mechanism failure, which can be detachment or blistering and pinholing, will enable formulation improvements. increasing the chances of success during filter cake removal in open hole operations. Likewise, knowledge of drill-in drilling fluid adsorption/desorption onto sand can help understand the filter cake-rock adhesion mechanism and consequently filter cake lift-off mechanism failures. The present study aimed to identify the lift-off failure mechanism for this type of fluid filter cake studying adsorption/desorption onto SiO(2) using solutions of natural polymers, lubricants, besides the fluid itself. Ellipsometry was employed to measure this process. The adsorption/desorption studies showed that the adsorbed layer of drilling fluid onto the walls of the rock pores is made up of clusters of polymers, linked by hydrogen bonds, which results in a force of lower cohesion compared to the electrostatic interaction between silica and polymers. Consequently, it was found that the most probable filter cake failure mechanism is rupture (blistering and pinholing), which results in the formation of ducts within the filter cake. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermediacy of the geminate base proton pair (A*center dot center dot center dot H(+)) in excited-state proton-transfer (ESPT) reactions (two-step mechanism) has been investigated employing the synthetic flavylium salt 7-hydroxy-4-methyl-flavylium chloride (HMF). In aqueous solution, the ESPT mechanism involves solely the excited acid AH* and base A* forms of HMF as indicated by the fluorescence spectra and double-exponential fluorescence decays (two species, two decay times). However, upon addition of either 1,4-dioxane or 1,2-propylene glycol, the decays become triple-exponential with a term consistent with the presence of the geminate base proton pair A*center dot center dot center dot H(+). The geminate pair becomes detectable because of the increase in the recombination rate constant, k(rec), of (A*center dot center dot center dot H(+)) with increasing the mole fraction of added organic cosolvent. Because the two-step ESPT mechanism splits the intrinsic prototropic reaction rates (deprotonation of AH(+)*, k(d), and recombination, k(rec) of A*center dot center dot center dot H(+)) from the diffusion controlled rates (dissociation, k(diss) and formation, k(diff)[H(+)], of A*center dot center dot center dot H+), the experimental detection of the geminate pair provides a wealth of information on the proton-transfer reaction (k(d) and k(rec)) as well as on proton diffusion/migration (k(diss) and k(diff)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layer-by-layer (LbL) films from K(2)Nb(6)O(17)(2-) and polyallylamine (PAH) and dip-coating films of H(2)K(2)Nb(6)O(17) were prepared on a fluorine-doped tin-oxide (FTO)-coated glass. The atomic force microscopy (AFM) images were carried out for morphological characterization of both materials. The real surface area and the roughness factor were determined on the basis of pseudocapacitive processes involved in the electroreduction/electrooxidation of gold layers deposited on these films. Next, lithium ion insertion into these materials was examined by means of electrochemical and spectroelectrochemical measurements. More specifically, cyclic voltammetry and current pulses under visible light beams were used to investigate mass transport and chromogenic properties. The lithium ion diffusion coefficient (D(Li)) within the LbL matrix is significantly higher than that within the dip-coating film, ensuring high storage capacity of lithium ions in the self-assembled electrode. Contrary to the LbL film, the potentiodynamic profile of absorbance change (Delta A) as a function of time is not similar to that obtained in the case of current density for the dip-coating film. Aiming at analyzing the rate of the coloration front associated with lithium ion diffusion, a spectroelectrochemical method based on the galvanostatic intermittent titration technique (GITT) was employed so as to determine the ""optical"" diffusion coefficient (D(op)). In the dip-coating film, the method employed here revealed that the lithium ion rate is higher in diffusion pathways formed from K(2)Nb(6)O(17)(2-) sites that contribute more significantly to Delta A. Meanwhile, the presence of PAH contributed to the increased ionic mobility in diffusion pathways in the LbL film, with low contribution to the electrochromic efficiency. These results aided a better understanding of the potentiodynamic profile of the temporal change of absorbance and current density during the insertion/deinsertion of lithium ions into the electrochromic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium ""butylchalcogenolates are generated in situ by reacting the elements (S, Se, and Te) with (n)butyl-lithium at 0 degrees C. Reaction of the lithium alkylchalcogenolates with activated alkenes and aldehydes gives the corresponding aldol adducts. The selenium-containing products give Morita-Baylis-Hillman adducts after the oxidation/elimination of the selenoxide. The whole sequence can be performed in a one-pot procedure. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is evidence of increased systemic expression of active GSK3B in Alzheimer`s disease patients, which apparently is associated with the formation of senile plaques and neurofibrillary tangles. Due to its central role in the pathogenesis of AD, GSK3B is currently a promising target of the pharmaceutical industry. Whilst trials with specific GSK inhibitors in AD are under way, major attention has been focused on the neuroprotective effects of lithium. Whereas the direct and indirect inhibitory effects of lithium over GSK3 activity have been documented by several groups, its effects over Gsk3 transcription have not yet been addressed. We used quantitative PCR to evaluate the transcriptional regulation of Gsk3a and Gsk3b in lithium-treated primary cultures of rat cortical and hippocampal neurons. We found a significant and dose-dependent reduction in the expression of Gsk3b, which was specific to hippocampal cells. This same effect was further confirmed in vivo by measuring Gsk3 expression in different brain regions and in peripheral leukocytes of adult rats treated with lithium. Our studies show that LiCl can modulate Gsk3b transcription in vitro and in vivo. This observation suggest new regulatory effects of lithium over Gsk3b, contributing to the better understanding of its mechanisms of action, offering a new and complementary explanation for Gsk3b modulation and reinforcing its potential for the inhibition of key pathological pathways in Alzheimer`s disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics and the thermodynamics of electrochemical intercalation of lithium into CeO(2)-TiO(2) films prepared by the sol-gel process were studied by galvanostatic intermittent titration technique (GITT) as function of the depth of lithium intercalation. The open-circuit-potential versus x in Li(x)(CeO(2)-TiO(2)) curve consists of two straight lines with different slopes, one in the range of 0.03 <= x <= 0.09 and the other of 0.09 < x <= 0.15. The standard Gibbs energy for lithium intercalation Delta G(1)(0) was 6kJ/mol for x = 0.09 in Li(x)(CeO(2)-TiO(2)) at room temperature. The chemical diffusion coefficient value, D(Li+), of lithium intercalation into thin film oxide was 2.14.10(-11) cm(2)/s at x = 0.15, and the value of the component diffusion coefficient D(Li+),(k) was about one order of magnitude lower than the coefficient of chemical diffusion.