45 resultados para Liszt, Franz
Resumo:
The production of e(+)e(-) pairs for m(e+e-) < 0.3 GeV/c(2) and 1< p(T) < 5 GeV/c is measured in p + p and Au + Au collisions at root s(NN) = 200 GeV. An enhanced yield above hadronic sources is observed. Treating the excess as photon internal conversions, the invariant yield of direct photons is deduced. In central Au + Au collisions, the excess of the direct photon yield over p + p is exponential in transverse momentum, with an inverse slope T = 221 +/- 19(stat) +/- 19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T(init) similar to 300-600 MeV at times of similar to 0.6-0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at similar to 170 MeV.
Resumo:
PHENIX has measured the e(+)e(-) pair continuum in root s(NN) = 200 GeV Au+Au and p+p collisions over a wide range of mass and transverse momenta. The e(+)e(-) yield is compared to the expectations from hadronic sources, based on PHENIX measurements. In the intermediate-mass region, between the masses of the phi and the J/psi meson, the yield is consistent with expectations from correlated c (c) over bar production, although other mechanisms are not ruled out. In the low-mass region, below the phi, the p+p inclusive mass spectrum is well described by known contributions from light meson decays. In contrast, the Au+Au minimum bias inclusive mass spectrum in this region shows an enhancement by a factor of 4.7 +/- 0.4(stat) +/- 1.5(syst) +/- 0.9(model). At low mass (m(ee) < 0.3 GeV/c(2)) and high p(T) (1 < p(T) < 5 GeV/c) an enhanced e(+)e(-) pair yield is observed that is consistent with production of virtual direct photons. This excess is used to infer the yield of real direct photons. In central Au+Au collisions, the excess of the direct photon yield over the p+p is exponential in p(T), with inverse slope T = 221 +/- 19(stat) +/- 19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T(init) similar or equal to 300-600 MeV at times of 0.6-0.15 fm/c after the collision are in qualitative agreement with the direct photon data in Au+Au. For low p(T) < 1 GeV/c the low-mass region shows a further significant enhancement that increases with centrality and has an inverse slope of T similar or equal to 100 MeV. Theoretical models underpredict the low-mass, low-p(T) enhancement.
Resumo:
It has been postulated that partonic orbital angular momentum can lead to a significant double-helicity dependence in the net transverse momentum of Drell-Yan dileptons produced in longitudinally polarized p + p collisions. Analogous effects are also expected for dijet production. If confirmed by experiment, this hypothesis, which is based on semiclassical arguments, could lead to a new approach for studying the contributions of orbital angular momentum to the proton spin. We report the first measurement of the double-helicity dependence of the dijet transverse momentum in longitudinally polarized p + p collisions at root s = 200 GeV from data taken by the PHENIX experiment in 2005 and 2006. The analysis deduces the transverse momentum of the dijet from the widths of the near-and far-side peaks in the azimuthal correlation of the dihadrons. When averaged over the transverse momentum of the triggered particle, the difference of the root mean square of the dijet transverse momentum between like-and unlike-helicity collisions is found to be -37 +/- 88(stat) +/- 14(sys)t MeV/c.
Resumo:
Pair correlations between large transverse momentum neutral pion triggers (p(T) = 4-7 GeV/c) and charged hadron partners (p(T) = 3-7 GeV/c) in central (0%-20%) and midcentral (20%-60%) Au + Au collisions at root s(NN) = 200 GeV are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot densematter. An out-of-plane trigger particle produces only 26 +/- 20% of the away-side pairs that are observed opposite of an in-plane trigger particle for midcentral (20%-60%) collisions. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism and the space-time evolution of heavy-ion collisions.
Resumo:
Measurements of the azimuthal anisotropy of high-p(T) neutral pion (pi(0)) production in Au+Au collisions at s(NN)=200 GeV by the PHENIX experiment are presented. The data included in this article were collected during the 2004 Relativistic Heavy Ion Collider running period and represent approximately an order of magnitude increase in the number of analyzed events relative to previously published results. Azimuthal angle distributions of pi(0) mesons detected in the PHENIX electromagnetic calorimeters are measured relative to the reaction plane determined event-by-event using the forward and backward beam-beam counters. Amplitudes of the second Fourier component (v(2)) of the angular distributions are presented as a function of pi(0) transverse momentum (p(T)) for different bins in collision centrality. Measured reaction plane dependent pi(0) yields are used to determine the azimuthal dependence of the pi(0) suppression as a function of p(T), R(AA)(Delta phi,p(T)). A jet-quenching motivated geometric analysis is presented that attempts to simultaneously describe the centrality dependence and reaction plane angle dependence of the pi(0) suppression in terms of the path lengths of hypothetical parent partons in the medium. This set of results allows for a detailed examination of the influence of geometry in the collision region and of the interplay between collective flow and jet-quenching effects along the azimuthal axis.
Resumo:
Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at s(NN)=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)(1/3) with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or similar to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.
Resumo:
The momentum distribution of electrons from semileptonic decays of charm and bottom quarks for midrapidity |y|< 0.35 in p+p collisions at s=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range 2 < p(T)< 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D -> e(+/-)K(-/+)X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p(T). A fixed-order-plus-next-to-leading-log perturbative quantum chromodynamics calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is sigma(bb)=3.2(-1.1)(+1.2)(stat)(-1.3)(+1.4)(syst)mu b.
Resumo:
We report the observation at the Relativistic Heavy Ion Collider of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron (gamma-h) background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics, making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I(AA), in central Au+Au collisions, is 0.32 +/- 0.12(stat)+/- 0.09(syst) for hadrons of 3 < p(T)(h)< 5 in coincidence with photons of 5 < p(T)(gamma)< 15 GeV/c. The suppression is comparable to that observed for high-p(T) single hadrons and dihadrons. The direct photon associated yields in p+p collisions scale approximately with the momentum balance, z(T)equivalent to p(T)(h)/p(T)(gamma), as expected for a measurement of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss.
Resumo:
We present inclusive charged hadron elliptic flow (v(2)) measured over the pseudorapidity range vertical bar eta vertical bar < 0.35 in Au+Au collisions at s(NN)=200 GeV. Results for v(2) are presented over a broad range of transverse momentum (p(T)=0.2-8.0 GeV/c) and centrality (0-60%). To study nonflow effects that are correlations other than collective flow, as well as the fluctuations of v(2), we compare two different analysis methods: (1) the event-plane method from two independent subdetectors at forward (vertical bar eta vertical bar=3.1-3.9) and beam (vertical bar eta vertical bar>6.5) pseudorapidities and (2) the two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p(T) and in centrality 0-40%. There is at most a 20% difference in the v(2) between the two event-plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event-plane measurements are discussed.
Resumo:
The double helicity asymmetry in neutral pion production for p(T) = 1 to 12 GeV/c was measured with the PHENIX experiment to access the gluon-spin contribution, Delta G, to the proton spin. Measured asymmetries are consistent with zero, and at a theory scale of mu 2 = 4 GeV(2) a next to leading order QCD analysis gives Delta G([0.02,0.3]) = 0.2, with a constraint of -0.7 < Delta G([0.02,0.3]) < 0.5 at Delta chi(2) = 9 (similar to 3 sigma) for the sampled gluon momentum fraction (x) range, 0.02 to 0.3. The results are obtained using predictions for the measured asymmetries generated from four representative fits to polarized deep inelastic scattering data. We also consider the dependence of the Delta G constraint on the choice of the theoretical scale, a dominant uncertainty in these predictions.
Resumo:
The PHENIX experiment presents results from the RHIC 2006 run with polarized p + p collisions at root s = 62.4 GeV, for inclusive pi(0) production at midrapidity. Unpolarized cross section results are measured for transverse momenta p(T) = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A(LL) are presented for p(T) = 1 to 4 GeV/c and probe the higher range of Bjorken x of the gluon (x(g)) with better statistical precision than our previous measurements at root s = 200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x(g) < 0.4.
Resumo:
For Au + Au collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, p(T), up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 < p(T) < 20 GeV/c. Experimental uncertainties are small enough to constrain any model-dependent parametrization for the transport coefficient of the medium, e. g., <(q) over cap > in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au + Au collisions.
Resumo:
Neutral pion transverse momentum (p(T)) spectra at midrapidity (|y| less than or similar to 0.35) were measured in Cu + Cu collisions at root s(NN) = 22.4, 62.4, and 200 GeV. Relative to pi(0) yields in p + p collisions scaled by the number of inelastic nucleon-nucleon collisions (N(coll)) the pi(0) yields for p(T) greater than or similar to 2 GeV/c in central Cu + Cu collisions are suppressed at 62.4 and 200 GeV whereas an enhancement is observed at 22.4 GeV. A comparison with a jet-quenching model suggests that final state parton energy loss dominates in central Cu + Cu collisions at 62.4 and 200 GeV, while the enhancement at 22.4 GeV is consistent with nuclear modifications in the initial state alone.
Resumo:
We report on the event structure and double helicity asymmetry (A(LL)) of jet production in longitudinally polarized p + p collisions at root s = 200 GeV. Photons and charged particles were measured by the PHENIX experiment at midrapidity vertical bar eta vertical bar < 0.35 with the requirement of a high-momentum (> 2 GeV/c) photon in the event. Event structure, such as multiplicity, p(T) density and thrust in the PHENIX acceptance, were measured and compared with the results from the PYTHIA event generator and the GEANT detector simulation. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet A(LL), photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster pT sum (p(T)(reco)). The effect of detector response and the underlying events on p(T)(reco) was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the next-to-leading-order and perturbative quantum chromodynamics jet production cross section. For 4< p(T)(reco) < 12 GeV/c with an average beam polarization of < P > = 49% we measured Lambda(LL) = -0.0014 +/- 0.0037(stat) at the lowest p(T)(reco) bin (4-5 GeV= c) and -0.0181 +/- 0.0282(stat) at the highest p(T)(reco) bin (10-12 GeV= c) with a beam polarization scale error of 9.4% and a pT scale error of 10%. Jets in the measured p(T)(reco) range arise primarily from hard-scattered gluons with momentum fraction 0: 02 < x < 0: 3 according to PYTHIA. The measured A(LL) is compared with predictions that assume various Delta G(x) distributions based on the Gluck-Reya-Stratmann-Vogelsang parameterization. The present result imposes the limit -a.1 < integral(0.3)(0.02) dx Delta G(x, mu(2) = GeV2) < 0.4 at 95% confidence level or integral(0.3)(0.002) dx Delta G(x, mu(2) = 1 GeV2) < 0.5 at 99% confidence level.
Resumo:
A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at