82 resultados para Linearly Lindelöf
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
A systematic study of magnetoresistance and dc magnetization was conducted in polycrystalline (Ru(1-x)Ir(x))Sr(2)GdCu(2)O(8) [(Ru,Ir)-1212] compounds, for 0 <= x <= 0.15. We found that a deviation from linearity in the normal-state electrical resistivity (rho) curves for temperatures below the magnetic transition temperature T(M) < 130 K can be properly described by a logarithmic term. The prefactor C(x, H) of this anomalous ln T contribution to rho(T) increases linearly with the Ir concentration, and diminishes rapidly with increasing applied magnetic field up to H approximate to 4 T, merging with the C(0,H) curve at higher magnetic fields. Correlation with magnetic susceptibility measurements supports a scenario of local perturbations in the orientation of Ru moments induced in the neighborhood of the Ir ions, therefore acting as scattering centers. The linear dependence of the prefactor C(x,H=0) and the superconducting transition temperature T(SC) on x points to a common source for the resistivity anomaly and the reduction in T(SC), suggesting that the CuO(2) and RuO(2) layers are not decoupled.
Resumo:
A phonon structure in the photoluminescence of EuTe was discovered, with a well-defined zero-phonon emission line (ZPL). The ZPL redshifts linearly with the intensity of applied magnetic field, indicating spin relaxation of the photoexcited electron, and saturates at a lower magnetic field than the optical absorption bandgap, which is attributed to formation of magnetic polarons. From the difference in these saturation fields, the zero-field polaron binding energy and radius are estimated to be 43 meV and 3.2 (in units of the EuTe lattice parameter), respectively. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634030]
Resumo:
Atomic clouds prepared in ""timed Dicke"" states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.
Resumo:
In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer, under the presence of observation errors, respective models of a complex system. We focus the specific case in which, at each time step, each agent takes into account its current observation as well as the average of the models of its neighbors. The agents are connected by a network of interaction of Erdos-Renyi or Barabasi-Albert type. First, we investigate situations in which one of the agents has a different probability of observation error (higher or lower). It is shown that the influence of this special agent over the quality of the models inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the effect of the different estimation error is even more pronounced, becoming superlinear. To complement our analysis, we provide the analytical solution of the overall performance of the system. We also investigate the knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of edges between agents (within a community) having higher probability of observation error promotes the loss of quality in the estimation of the agents in the other communities.
Resumo:
Deoxyribonucleic acid based gel solid electrolytes were prepared and their electric properties were characterized. Their ionic conductivity is in the range of 10(-4)-10(-5) S/cm at room temperature and increases linearly in function of temperature, obeying an Arrhenius-like relationship. The present study, combined with the literature data, suggests that the electrical conduction mechanism in these membranes involve ion motion and/or charge hopping, promoted most likely by a significant interaction between the membrane components. The good conductivity results, as found here, together with the good transparency and good adhesion to the electrodes show that the DNA-based gel polymer electrolytes are very promising materials for application in various electrochromic devices. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3610951]
Resumo:
Three new bimetallic oxamato-based magnets with the proligand 4,5-dimethyl-1,2-phenylenebis-(oxamato) (dmopba) were synthesized using water or dimethylsulfoxide (DMSO) as solvents. Single crystal X-ray diffraction provided structures for two of them: [MnCu(dmopba)(H(2)O)(3)]n center dot 4nH(2)O (1) and [MnCu(dmopba)(DMSO)(3)](n center dot)nDMSO (2). The crystalline structures for both 1 and 2 consist of linearly ordered oxamato-bridged Mn(II)Cu(II) bimetallic chains. The magnetic characterization revealed a typical behaviour of ferrimagnetic chains for 1 and 2. Least-squares fits of the experimental magnetic data performed in the 300-20 K temperature range led to J(MnCu) = -27.9 cm(-1), g(Cu) = 2.09 and g(Mn) = 1.98 for 1 and J(MnCu) = -30.5 cm(-1), g(Cu) = 2.09 and g(Mn) = 2.02 for 2 (H = -J(MnCu)Sigma S(Mn, i)(S(Cu, i) + S(Cu, i-1))). The two-dimensional ferrimagnetic system [Me(4)N](2n){Co(2)[Cu(dmopba)](3)}center dot 4nDMSO center dot nH(2)O (3) was prepared by reaction of Co(II) ions and an excess of [Cu(dmopba)](2-) in DMSO. The study of the temperature dependence of the magnetic susceptibility as well as the temperature and field dependences of the magnetization revealed a cluster glass-like behaviour for 3.
Resumo:
The successful measurements of a sublattice magnetism with (51)V NMR techniques in the sigma-phase Fe(100-x)V(x) alloys with x=34.4, 39.9, and 47.9 are reported. Vanadium atoms, which were revealed to be present on all five crystallographic sites, are found to be under the action of the hyperfine magnetic fields produced by the neighboring Fe atoms, which allow the observation of (51)V NMR signals. Their nuclear magnetic properties are characteristic of a given site, which strongly depend on the composition. Site A exhibits the strongest magnetism while site D is the weakest. The estimated average magnetic moment per V atom decreases from 0.36 mu(B) for x=34.4 to 0.20 mu(B) for x=47.9. The magnetism revealed at V atoms is linearly correlated with the magnetic moment of Fe atoms, which implies that the former is induced by the latter.
Resumo:
The paired fronto-lateral gland pores and lattice organs (LO1, 2, 3, 4, and 5) of seven species of pedunculate barnacles belonging to two thoracican suborders, Heteralepadomorpha (family Heteralepadidae: Heteralepas sp. 1 and 2) and Lepadomorpha (families Poecilasmatidae: Poecilasma inaequilaterale and Octolasmis aymonini geryonophila and Lepadidae: Lepas pacifica, Dosima fascicularis, and Conchoderma virgatum), were investigated by scanning electron microscopy (SEM). While the fronto-lateral gland pores exhibit slight variation among species, with only L. pacifica showing a different morphology, the variations in the arrangement of LOs are phylogenetically instructive. The lattice organs in the foregoing species correspond in general to the inferred advanced type (Type C), but the distinct keel in the pore field in P. inaequilaterale and L. pacifica is reminiscent of, but not necessarily identical with the less advanced Type B. The arrangement of the anterior LOs (1-2) is rhomboidal in the two heteralepadomorph species, the two poecilasmatid species, and two of the three lepadid species, as it is in all previously and presently known lepadomorph cyprids except D. fascicularis. In this last species, they are deployed linearly along the hinge line. A linear arrangement of all the lattice organs is presumably the plesiomorphic condition for the Thoracica; an obvious exception being the pattern seen in Ibla cumingi. The arrangement of the first two pairs of posterior LOs (3-4) in O. a. geryonophila and C. virgatum differs from that of all previously described Lepadomorpha in being rhomboidal rather than aligned linearly along the hinge line. This same arrangement of LOs 3 and 4 in the two heteralepadomorph species is notable since it is not known in other thoracicans. Our results concerning variation in lattice organs of the lower Pedunculata are more or less consistent with current phylogenetic speculations and genetic information that ally Heteralepadomorpha with Lepadomorpha. Significance of this variation at lower taxonomic levels is also evident in the two similar forms of Heteralepas.
Resumo:
The thermo-solvatochromism of 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr(2), has been studied in mixtures of water, W, with ionic liquids, ILs, in the temperature range of 10 to 60 degrees C, where feasible. The objectives of the study were to test the applicability of a recently introduced solvation model, and to assess the relative importance of solute-solvent solvophobic interactions. The ILs were 1-allyl-3-alkylimidazolium chlorides, where the alkyl groups are methyl, 1-butyl, and 1-hexyl, respectively. The equilibrium constants for the interaction of W and the ILs were calculated from density data; they were found to be linearly dependent on N(C), the number of carbon atoms of the alkyl group; van't Hoff equation (log K versus 1/T) applied satisfactorily. Plots of the empirical solvent polarities, E(T) (MePMBr(2)) in kcal mol(-1), versus the mole fraction of water in the binary mixture, chi(w), showed non-linear, i.e., non-ideal behavior. The dependence of E(T) (MePMBr(2)) on chi(w), has been conveniently quantified in terms of solvation by W, IL, and the ""complex"" solvent IL-W. The non-ideal behavior is due to preferential solvation by the IL and, more efficiently, by IL-W. The deviation from linearity increases as a function of increasing N(C) of the IL, and is stronger than that observed for solvation of MePMBr(2) by aqueous 1-propanol, a solvent whose lipophilicity is 12.8 to 52.1 times larger than those of the ILs investigated. The dependence on N(C) is attributed to solute-solvent solvophobic interactions, whose relative contribution to solvation are presumably greater than that in mixtures of water and 1-propanol.
Resumo:
This work presents a study of the catalytic oxidation of ethanol on polycrystalline gold electrode in alkaline media. The investigation was carried out by means of chronoamperometry, cyclic voltammetry, and in situ FTIR spectroscopy. The main goal was to investigate the early stages of ethanol electrooxidation, namely at fairly low potentials (E = 600 mV vs. RHE) and for moderate reaction times (t < 300 s). Chronoamperometric experiments show a current increase accompanying the increasing in the ethanol concentration up to about 2 M and then a slight decrease at 3 M. Adsorbed CO has been observed as early as about 200 mV vs. RHE and indicates that the cleavage of the C-C bond might occur, probably to a small extent, at very low overpotentials during ethanol adsorption on gold surface. The amount of dissolved acetate ions produced during the chronoamperomentry was followed by the asymmetric stretching band at 1558 cm(-1) as a function of time, and found to increase linearly with time up to 300 s. This allowed estimating the reaction order of acetate formation with respect to ethanol concentration.
Resumo:
CoB, CO(2)B, CoSi, Co(2)Si and CO(5)Si(2)B phases can be formed during heat-treatment of amorphous co-Si-B soft magnetic materials. Thus, it is important to determine their magnetic behavior as a function of applied field and temperature. In this study, polycrystalline single-phase samples of the above phases were produced via arc melting and heat-treatment under argon. The single-phase nature of the samples was confirmed via X-ray diffraction experiments. AC and DC magnetization measurements showed that Co(2)Si and CO(5)Si(2)B phases are paramagnetic. Minor amounts of either Co(2)Si or CoSi(2) in the CoSi-phase sample suggested a paramagnetic behavior of the CoSi-phase, however, it should be diamagnetic as shown in the literature. The diamagnetic behavior of the CoB phase was also confirmed. The paramagnetic behavior of CO(5)Si(2)B is for the first time reported. The magnetization results of the phase CO(2)B have a ferromagnetic signature already verified on previous NMR studies. A detailed set of magnetization measurements of this phase showed a change of the easy magnetization axis starting at 70K, with a temperature interval of about 13K at a very small field of 1 mT. As the strength of the field is increased the temperature interval is enlarged. The strength of field at which the magnetization saturates increases almost linearly as the temperature is increased above 70K. The room temperature total magnetostriction of the CO(2)B phase was determined to be 8 ppm at a field of 1T. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present work we study the magnetostriction of Fe(91)Sn(9) and Fe(80)Sn(20) polycrystalline samples produced by arc melting and heat treated at temperatures of 1153 K for 6 h and 1023 K for 24 h, looking for high values of magnetostriction as in Fe-Ga alloys. Magnetostriction, as well as saturation magnetization measurements, was carried out at temperatures close to 203 K in the magnetic field interval 0 to 1.5 T. Results of magnetostriction on sample Fe(91)Sn(9), which has almost pure alpha-phase, show magnitude and behavior similar to pure Fe. The two additional Fe(80)Sn(20) samples have a combination of alpha-phase plus either Fe(5)Sn(3) or Fe(3)Sn(2) and show a peculiar behavior of the magnetostriction for mu(0)H < 0.3 T the magnetostriction grows from zero to saturation of the alpha-phase. Following, for mu(0)H > 0.3 T, the magnetostriction starts again to grow linearly with the field, but saturation was not observed up to 5 T. This behavior was attributed to the presence of Fe(5)Sn(3) or Fe(3)Sn(2) phases in these samples that are also ferromagnetic as the alpha-phase is. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new circuit configuration, linearly conjugate to the standard Chua`s circuit, is presented. Its distinctive feature is that the equations now admit an additional parameter, which controls the dissipation in the network connected to the Chua diode. In the limiting case we obtain the simplest chaotic circuit, consisting of a piecewise-linear resistor and three lossless elements.
Resumo:
In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.