48 resultados para Legalization of regulation
Resumo:
Background: Nitric oxide (NO) synthesis has been described in several circumventricular and hypothalamic structures in the central nervous system that are implicated in mediating central angiotensin-II (ANG-II) actions during water deprivation and hypovolemia. Neuroendocrine and cardiovascular responses, drinking behavior, and urinary excretions were examined following central angiotensinergic stimulation in awake freely-moving rats pretreated with intracerebroventricular injections of N omega-nitro-L-arginine methyl ester (L-NAME, 40 mu g), an inhibitor of NO synthase, and L-arginine (20 ug), a precursor of NO. Results: Injections of L-NAME or ANG-II produced an increase in plasma vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) levels, an increase in water and sodium intake, mean arterial blood pressure and sodium excretion, and a reduction of urinary volume. L-NAME pretreatment enhanced the ANG-II response, while L-arginine attenuated VP and OT release, thirst, appetite for sodium, antidiuresis, and natriuresis, as well as pressor responses induced by ANG-II. Discussion and conclusion: Thus, the central nitrergic system participates in the angiotensinergic responses evoked by water deprivation and hypovolemia to refrain neurohypophysial secretion, hydromineral balance, and blood pressure homeostasis.
Resumo:
Background: Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. Methods: Twenty-four adult Wistar rats, 60 days old (+/-250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle + melatonin [ 100 mu g/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a. m. Results: Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. Conclusions: We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.
Resumo:
Background: Sigma factors and the alarmone ppGpp control the allocation of RNA polymerase to promoters under stressful conditions. Both ppGpp and the sigma factor sigma(S) (RpoS) are potentially subject to variability across the species Escherichia coli. To find out the extent of strain variation we measured the level of RpoS and ppGpp using 31 E. coli strains from the ECOR collection and one reference K-12 strain. Results: Nine ECORs had highly deleterious mutations in rpoS, 12 had RpoS protein up to 7-fold above that of the reference strain MG1655 and the remainder had comparable or lower levels. Strain variation was also evident in ppGpp accumulation under carbon starvation and spoT mutations were present in several low-ppGpp strains. Three relationships between RpoS and ppGpp levels were found: isolates with zero RpoS but various ppGpp levels, strains where RpoS levels were proportional to ppGpp and a third unexpected class in which RpoS was present but not proportional to ppGpp concentration. High-RpoS and high-ppGpp strains accumulated rpoS mutations under nutrient limitation, providing a source of polymorphisms. Conclusions: The ppGpp and sigma(S) variance means that the expression of genes involved in translation, stress and other traits affected by ppGpp and/or RpoS are likely to be strain-specific and suggest that influential components of regulatory networks are frequently reset by microevolution. Different strains of E. coli have different relationships between ppGpp and RpoS levels and only some exhibit a proportionality between increasing ppGpp and RpoS levels as demonstrated for E. coli K-12.
Resumo:
Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) play a central role in neuronal differentiation. However, Ca(2+) signaling in this process remains poorly understood and it is unknown whether embryonic and adult stem cells share the same signaling pathways. To clarify this issue, neuronal differentiation was analyzed in two cell lines: embryonic P19 carcinoma stem cells (CSCs) and adult murine bone-marrow mesenchymal stem cells (MSC). We studied Ca(2+) release from the endoplasmic reticulum via intracellular ryanodine-sensitive (RyR) and IP(3)-sensitive (IP(3)R) receptors. We observed that caffeine, a RyR agonist, induced a [Ca(2+)](i) response that increased throughout neuronal differentiation. We also demonstrated a functional coupling between RyRs and L-but not with N-, P-, or Q-type Ca(v)1 Ca(2+) channels, both in embryonal CSC and adult MSC. We also found that agonists of L-type channels and of RyRs increase neurogenesis and neuronal differentiation, while antagonists of these channels have the opposite effect. Thus, our data demonstrate that in both cell lines RyRs control internal Ca(2+) release following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels. This study shows that both in embryonal CSC and adult MSC [Ca(2+)](i) is controlled by a common pathway, indicating that coupling of L-type Ca(2+) channels and RyRs may be a conserved mechanism necessary for neuronal differentiation.
Resumo:
Rapid alkalinization factor (RALF) is part of a growing family of small peptides with hormone characteristics in plants. Initially isolated from leaves of tobacco plants, RALF peptides can be found throughout the plant kingdom and they are expressed ubiquitously in plants. We took advantage of the small gene family size of RALF genes in sugarcane and the ordered cellular growth of the grass sugarcane leaves to gain information about the function of RALF peptides in plants. Here we report the isolation of two RALF peptides from leaves of sugarcane plants using the alkalinization assay. SacRALF1 was the most abundant and, when added to culture media, inhibited growth of microcalli derived from cell suspension cultures at concentrations as low as 0.1 mu M. Microcalli exposed to exogenous SacRALF1 for 5 days showed a reduced number of elongated cells. Only four copies of SacRALF genes were found in sugarcane plants. All four SacRALF genes are highly expressed in young and expanding leaves and show a low or undetectable level of expression in expanded leaves. In half-emerged leaf blades, SacRALF transcripts were found at high levels at the basal portion of the leaf and at low levels at the apical portion. Gene expression analyzes localize SacRALF genes in elongation zones of roots and leaves. Mature leaves, which are devoid of expanding cells, do not show considerable expression of SacRALF genes. Our findings are consistent with SacRALF genes playing a role in plant development potentially regulating tissue expansion.
Resumo:
CYP3A4 and CYP3A5 are cytochrome P450 enzymes that are highly expressed in the liver and gut and metabolize endogenous compounds and xenobiotics. Statins are cholesterol-lowering drugs that are extensively metabolized by CYP3A4 and CYP3A5. The bioavailability of statins is affected by CYP3A4 and CYP3A5 and glucuronidases metabolism as well as uptake and efflux transporters that affect drug disposition. CYP3A4 and CYP3A5 variants have been demonstrated to influence the pharmacokinetics, efficacy and safety of statins. Inducers and inhibitors of CYP3A4 and CYP3A5 play an important role in reducing statin efficacy and increase the risk of adverse effects, respectively. Statins have been demonstrated to increase CYP3A expression in vitro, most likely because they are ligands to nuclear receptors (pregnane X receptor and constitutive androsterone receptor) that form heterodimers with retinoid X receptors and bind to responsive elements in the CYP3A4 and CYP3A5 promoter regions. This special report outlines the earlier studies on variability of response to statins owing to CYP3A variants and highlights findings on the induction of CYP3A4 and CYP3A5 expression by statins.
Resumo:
Objective-Nitro-fatty acids (NO(2)-FAs) are emerging as a new class of cell signaling mediators. Because NO(2)-FAs are found in the vascular compartment and their impact on vascularization remains unknown, we aimed to investigate the role of NO(2)-FAs in angiogenesis. Methods and Results-The effects of nitrolinoleic acid and nitrooleic acid were evaluated on migration of endothelial cell (EC) in vitro, EC sprouting ex vivo, and angiogenesis in the chorioallantoic membrane assay in vivo. At 10 mu mol/L, both NO(2)-FAs induced EC migration and the formation of sprouts and promoted angiogenesis in vivo in an NO-dependent manner. In addition, NO(2)-FAs increased intracellular NO concentration, upregulated protein expression of the hypoxia inducible factor-1 alpha (HIF-1 alpha) transcription factor by an NO-mediated mechanism, and induced expression of HIF-1 alpha target genes, such as vascular endothelial growth factor, glucose transporter-1, and adrenomedullin. Compared with typical NO donors such as spermine-NONOate and deta-NONOate, NO(2)-FAs were slightly less potent inducers of EC migration and HIF-1 alpha expression. Short hairpin RNA-mediated knockdown of HIF-1 alpha attenuated the induction of vascular endothelial growth factor mRNA expression and EC migration stimulated by NO(2)-FAs. Conclusion-Our data disclose a novel physiological role for NO(2)-FAs, indicating that these compounds induce angiogenesis in an NO-dependent mechanism via activation of HIF-1 alpha. (Arterioscler Thromb Vasc Biol. 2011;31:1360-1367.)
Resumo:
We show indirect evidences for the possible involvement of NIT-2-like binding motifs in transcription modulation of the PbGP43 gene, which codes for an important antigen from the human fungal pathogen Paracoccidioides brasiliensis. This investigation was motivated by the finding of 23 NIT2-like sites within the proximal -2047 nucleotides of the PbGP43 5` intergenic region from the Pb339 isolate. They compose four clusters, two of them identical. We found four NIT2-containing probes that were positive in electrophoretic mobility shift assays and further analyzed them. PbGP43 could be modulated by nitrogen primary sources in Pb339, Pb3 and Pb18 isolates, as observed by reverse transcription (RT) real time-PCR. Gene reporter assays conducted in Aspergillus nidulans suggested that the minimal fragment responsible for nitrogen modulation lies within -480 bp of the PbGP43 gene. This is the first report on PbGP43 transcription modulation in response to nitrogen primary sources, which might help understand its regulation during infection. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Microbial xylanolytic enzymes have a promising biotechnological potential, and are extensively applied in industries. In this study, induction of xylanolytic activity was examined in Aspergillus phoenicis. Xylanase activity induced by xylan, xylose or beta-methylxyloside was predominantly extracellular (93-97%). Addition of 1% glucose to media supplemented with xylan or xylose repressed xylanase production. Glucose repression was alleviated by addition of cAMP or dibutyryl-cAMP. These physiological observations were supported by a Northern analysis using part of the xylanase gene ApXLN as a probe. Gene transcription was shown to be induced by xylan, xylose, and beta-methylxyloside, and was repressed by the addition of 1% glucose. Glucose repression was partially relieved by addition of cAMP or dibutyryl cAMP.
Resumo:
We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl(-)] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute a parts per thousand 85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute a parts per thousand 22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.
Resumo:
In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K-0.5 values for Na+ with minor alterations in K-0.5 values for K+ and N-H-4(+), causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 mu M ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Studies on the involvement of 5-HT1-mediated mechanisms in the dorsal periaqueductal gray (dPAG) of animals with past stressful experiences have not been conducted so far. We investigated the role of 5-HT1 receptors in the dPAG of rats previously submitted to contextual fear conditioning. Defensive behaviors induced by activation of the dPAG were assessed by measuring the lowest electric current applied to this structure (threshold) able to produce freezing and escape responses during testing sessions of contextual fear conditioning, in which animals were placed in a context previously paired to footshocks. The 5-HT1A function of the dPAG was evaluated by local injections of 8-OH-DPAT (4 and 8 nmol/0.2 mu L) and WAY-100635 (10 nmol/0.2 mu L), selective agonist and antagonist of 5-HT1A receptors, respectively. In accordance with previous studies, 8-OH-DPAT increased aversive thresholds (antiaversive effects) but injections of WAY 100635 into the dPAG did not produce significant effects on the aversive thresholds in naive rats. However, the aversive thresholds of animals exhibiting contextual fear remained unchanged with both treatments. Moreover, 8-OH-DPAT and WAY 100635 did not change the dPAG post-stimulation freezing. The present results suggest that the stressful experience of being fear conditioned has an effect on the role of the 5-HT1A receptors in mediating unconditioned fear. Also, the reduction in the regulation of the defensive behaviors by 5-HT1A-mediated mechanisms in the dPAG of these animals may underlie the stress precipitated psychopathology associated with the neural substrates of aversion of the dPAG. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, being in a position to send auditory information to motor centers that participate in behaviors such as prey catching and predators` avoidance The role of the central nucleus of the IC (CIC) on fear and anxiety has been suggested on the basis that rats are able to engage in tasks to decrease the aversiveness of CIC stimulation, increased Fos immunolabeling during diverse aversive states and increased CIC auditory evoked potentials (AEP) induced by conditioned fear stimuli Additionally it was shown that brainstem AEP, represented by wave V, for which the main generator is the IC, is increased during experimentally induced anxiety Rats segregated according to their low or high emotional reactivity have been used as an important tool in the study of fear and anxiety The IC contains a high density of GABA receptors Since the efficacy of an anxiolytic compound is a function of the animal`s anxiety level, it is possible that GABA-benzodiazepine (Bzp) agents affect LA and HA animals differently In this study we investigated the GABA-Bzp influence on the modulation of AEP in rats with low (LA) or high-anxiety (HA) levels, as assessed by the elevated plus maze test (EPM) GABA-Bzp modulation on the unconditioned AEP response was analyzed by using intra CIC injections (0 2 mu l) of the GABA-Bzp agonists muscimol (121 ng) and diazepam (30 mu g) or the GABA inhibitors bicuculline (10 ng) and semicarbazide (7 mu g) In a second experiment, we evaluate the effects of contextual aversive conditioning on AEP using foot shocks as unconditioned stimuli On the unconditioned fear paradigm GABA inhibition in creased AEP in LA rats and decreases this measure in HA counterparts Muscimol was effective in reducing AEP in both LA and HA rats Contextual fear stimuli increased the magnitude of AEP In spite of no effect obtained with diazepam in LA rats the drug inhibited AEP in HA animals The specificity of the regulatory mechanisms mediated by GABA Bzp for the ascending neurocircuits responsible for the acquisition of aversive information in LA and HA animals shed light on the processing of sensory information underlying the generation of defensive reactions (C) 2010 IBRO Published by Elsevier Ltd All rights reserved
Resumo:
Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart. (Hypertension. 2011;58:182-189.).