35 resultados para Lactational uptake
Resumo:
Aim: Statin disposition and response are greatly determined by the activities of drug metabolizing enzymes and efflux/uptake transporters. there is little information on the regulation of these proteins in human cells after statin therapy. In this study, the effects of atorvastatin and simvastatin on mRNA expression of efflux (ABCB1, ABCG2 and ABCC2) and uptake (SLCO1B1, SLCO2B1 and SLC22A1) drug transporters in Caco-2 and HepG2 cells were investigated. Methods: Quantitative real-time PCR was used to measure mRNA levels after exposure of HepG2 and Caco-2 cells to statins. Results: Differences in mRnA basal levels of the transporters were as follows: ABCC2>ABCG2>ABCB1>SLCO1B1>>>SLC22A1>SLC O2B1 for HepG2 cells, and SLCO2B1>>ABCC2>ABCB1>ABCG2>>>SLC22A1 for Caco-2 cells. While for HepG2 cells, ABCC2, ABCG2 and SLCO2B1 mRnA levels were significantly up-regulated at 1, 10 and 20 mu mol/L after 12 or 24 h treatment, in Caco-2 cells, only the efflux transporter ABCB1 was significantly down-regulated by two-fold following a 12 h treatment with atorvastatin. Interestingly, whereas treatment with simvastatin had no effect on mRNA levels of the transporters in HepG2 cells, in Caco-2 cells the statin significantly down-regulated ABCB1, ABCC2, SLC22A1, and SLCO2B1 mRnA levels after 12 or 24 h treatment. Conclusion: These findings reveal that statins exhibits differential effects on mRNA expression of drug transporters, and this effect depends on the cell type. Furthermore, alterations in the expression levels of drug transporters in the liver and/or intestine may contribute to the variability in oral disposition of statins.
Resumo:
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+), K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (approximate to 14 mu m(2) membrane per mu m(3) cytoplasm), deep invaginations that house the Na(+), K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 mu m(2) mu m(-2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 mu m(2) mu m(-2)), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+), K(+)-ATPase specific activity resembles marine crabs but is approximate to 5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two alpha-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4)(+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water. J. Exp. Zool. 313A:508-523, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
(99m)Tc-MIBI gated myocardial scintigraphy (GMS) evaluates myocyte integrity and perfusion, left ventricular (LV) dyssynchrony and function. Cardiac resynchronization therapy (CRT) may improve the clinical symptoms of heart failure (HF), but its benefits for LV function are less pronounced. We assessed whether changes in myocardial (99m)Tc-MIBI uptake after CRT are related to improvement in clinical symptoms, LV synchrony and performance, and whether GMS adds information for patient selection for CRT. A group of 30 patients with severe HF were prospectively studied before and 3 months after CRT. Variables analysed were HF functional class, QRS duration, LV ejection fraction (LVEF) by echocardiography, myocardial (99m)Tc-MIBI uptake, LV end-diastolic volume (EDV) and end-systolic volume (ESV), phase analysis LV dyssynchrony indices, and regional motion by GMS. After CRT, patients were divided into two groups according to improvement in LVEF: group 1 (12 patients) with increase in LVEF of 5 or more points, and group 2 (18 patients) without a significant increase. After CRT, both groups showed a significant improvement in HF functional class, reduced QRS width and increased septal wall (99m)Tc-MIBI uptake. Only group 1 showed favourable changes in EDV, ESV, LV dyssynchrony indices, and regional motion. Before CRT, EDV, and ESV were lower in group 1 than in group 2. Anterior and inferior wall (99m)Tc-MIBI uptakes were higher in group 1 than in group 2 (p < 0.05). EDV was the only independent predictor of an increase in LVEF (p=0.01). The optimal EDV cut-off point was 315 ml (sensitivity 89%, specificity 94%). The evaluation of EDV by GMS added information on patient selection for CRT. After CRT, LVEF increase occurred in hearts less dilated and with more normal (99m)Tc-MIBI uptake.
Resumo:
Objective. Previously we showed that after intravenous injection a lipidic nanoemulsion concentrates in breast carcinoma tissue and other solid tumors and may carry drugs directed against neoplastic tissues. Use of the nanoemulsion decreases toxicity of the chemotherapeutic agents without decreasing the anticancer action. Currently, the hypothesis was tested whether the nanoemulsion concentrates in breast carcinoma tissue after locoregional injection. Methods. Three different techniques of injection of the nanoemulsion were tested in patients scheduled for surgical treatment: G1 (n=4) into the mammary tissue 5 cm away from the tumor; G2 (n=4) into the peritumoral mammary tissue; G3 (n=6) into the tumoral tissue. The nanoemulsion labeled with radioactive cholesteryl oleate was injected 12 h before surgery; plasma decay of the label was determined from blood samples collected over 24 h and the tissue fragments excised during the surgery were analyzed for radioactivity uptake. Results. Among the three nanoemulsion injection techniques, G3 showed the greatest uptake (data expressed in c.p.m/g of tissue) by the tumor (44,769 +/- 54,749) and by the lymph node (2356 +/- 2966), as well as the greatest concentration in tumor compared to normal tissue (844 +/- 1673). In G1 and G2, uptakes were, respectively, tumor: 60 +/- 71 and 843 +/- 1526; lymph node: 263 +/- 375 and 102 +/- 74; normal tissue: 139 +/- 102 and 217 +/- 413. Conclusions. Therefore, with intralesional injection of the nanoemulsion, a great concentration effect can be achieved. This injection technique may be thus a promising approach for drug-targeting in neoadjuvant chemotherapy in breast cancer treatment. (C) 2008 Published by Elsevier Inc.
Resumo:
Leishmaniasis is a parasitic disease caused by the intramacrophage protozoa Leishmania spp. and may be fatal if left untreated. Although pentavalent antimonials are toxic and their mechanism of action is unclear, they remain the first-line drugs for treatment of leishmaniasis. An effective therapy could be achieved by delivering antileishmanial drugs to the site of infection. Compared with free drugs, antileishmanial agent-containing liposomes are more effective, less toxic and have fewer adverse side effects. The aim of this study was to develop novel meglumine antimoniate (MA)-containing liposome formulations and to analyse their antileishmanial activity and uptake by macrophages. Determination of the 50% inhibitory concentration (IC(50)) values showed that MA-containing liposomes were >= 10-fold more effective than the free drug, with a 5-fold increase in selectivity index, higher activity and reduced macrophage toxicity. The concentration required to kill 100% of intracellular amastigotes was >= 40-fold lower when MA was encapsulated in liposomes containing phosphatidylserine compared with the free drug. Fluorescence microscopy analysis revealed increased uptake of fluorescent liposomes in infected macrophages after short incubation times compared with non-infected macrophages. In conclusion, these data suggest that MA encapsulated in liposome formulations is more effective against Leishmania-infected macrophages than the non-liposomal drug. Development of liposome formulations is a valuable approach to the treatment of infectious diseases involving the mononuclear phagocyte system. (C) 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Purpose In animal experiments paclitaxel oleate associated with a cholesterol-rich nanoemulsion concentrated in the neoplastic tissues and showed reduced toxicity and increased antitumor activity compared with paclitaxel-Cremophor EL. Here, a clinical study was performed in breast cancer patients to evaluate the tumoral uptake, pharmacokinetics and toxicity of paclitaxel associated to nanoemulsions. Methods Twenty-four hours before mastectomy [(3)H]paclitaxel oleate associated with [(14)C]-cholesteryl oleatenanoemulsion or [(3)H]- paclitaxel in Cremophor EL were injected into five patients for collection of blood samples and fragments of tumor and normal breast tissue. A pilot clinical study of paclitaxel-nanoemulsion administered at 3-week intervals was performed in four breast cancer patients with refractory advanced disease at 175 and 220 mg/m(2) dose levels. Results T(1/2) of paclitaxel oleate associated to the nanoemulsion was greater than that of paclitaxel (t(1/2) = 15.4 +/- 4.7 and 3.5 +/- 0.80 h). Uptake of the [(14)C]-cholesteryl ester nanoemulsion and [(3)H]- paclitaxel oleate by breast malignant tissue was threefold greater than the normal breast tissue and toxicity was minimal at the two dose levels. Conclusions Our results suggest that the paclitaxel-nanoemulsion preparation can be advantageous for use in the treatment of breast cancer because the pharmacokinetic parameters are improved, the drug is concentrated in the neoplastic tissue and the toxicity of paclitaxel is reduced.
Resumo:
The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC(50)) were 22.5 (+/- 0.60) and 12.5 (+/- 0.26) mu g/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 mu g/mL, respectively. The MBC of UA-LIPO was twice as low (16 mu g/mL) as that of UA (32 mu g/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 x 10(4) +/- 28.3 x 10(2) c.p.s), in comparison with UA (9.5 x 10(4) +/- 11.4 x 10(2) c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.
Resumo:
Sperm-mediated gene transfer (SMGT) is a fast and low-cost method used to produce transgenic animals. The objective of this study was to evaluate the effects of the concentration of exogenous DNA and the duration of incubation on DNA uptake by bovine spermatozoa and subsequently the integrity of sperm DNA and sperm apoptosis. Spermatozoa (5 X 10(6) cells/mL) were incubated with 100, 300, or 500 ng of exogenous DNA (pEYFP-Nuc plasmid) for 60 or 120 min at 39 degrees C. The amount of exogenous DNA associated with spermatozoa was quantified by real-time PCR, and the percentages of DNA fragmentation in spermatozoa were evaluated using SCSA and a TUNEL assay, coupled with flow cytometry. Uptake of exogenous DNA increased significantly as incubation increased from 60 to 120 min (0.0091 and 0.028 ng, respectively), but only when the highest exogenous DNA concentration (500 ng) was used (P < 0.05). Based on SCSA and TUNEL assays, there was no effect of exogenous DNA uptake or incubation period on sperm DNA integrity. In conclusion, exogenous DNA uptake by bovine spermatozoa was increased with the highest exogenous DNA concentration and longest incubation period, but fragmentation of endogenous DNA was apparently not induced. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.
Resumo:
It has been suggested that fluoride retention in plaque is limited by available binding sites. We determined the effects of fluoridated or placebo dentifrices on plaque and salivary fluoride concentrations [F]s in communities with different water fluoride concentrations (0.04, 0.85, 3.5 ppm). After one week of dentifrice use, samples were collected 1.0 and 12 hrs after the last use of dentifrices. After the use of fluoridated dentifrice, plaque fluoride concentrations were higher at both times, except at 12 hrs in the 3.5-ppm community. Plaque concentrations at 1.0 hr after the use of fluoridated dentifrice increased almost constantly (6.5 mmol/kg), but then decreased approximately 50% at 12 hrs in each community. Unlike previous studies, the present findings suggest that the use of fluoridated dentifrice is likely to increase plaque fluoride concentrations significantly for up to 12 hrs in areas where the water contains fluoride close to 1.0 ppm. As previously reported, plaque fluoride concentrations were directly related to calcium concentrations.
Resumo:
Strong evidence obtained from in vivo and ex-vivo studies suggests the existence of interaction between dopaminergic and nitrergic systems. Some of the observations suggest a possible implication of nitric oxide (NO) in dopamine (DA) uptake mechanism. The present work investigated the interaction between both systems by examining the effect of an NO donor, sodium nitroprusside (SNP), associated with the indirect DA agonist, amphetamine (AMPH) on tritiated DA uptake in cultures of embryonic mesencephalic neurons. Consistent with the literature, both AMPH (1, 3 and 10 mu M) and SNP (300 mu M and 1 mM) inhibited DA uptake in a dose-dependent manner. In addition, the inhibition of DA uptake by AMPH (1 and 3 mu M) was significantly increased by the previous addition of SNP (300 mu M). The implication of NO in this interaction was supported by the fact that the free radical scavenger N-acetyl-L-Cysteine (500 mu M) significantly increased DA uptake and completely abolished the effect of SNP, leaving unaffected that from AMPH on DA uptake. Further, double-labeling immunohistochemistry showed the presence of tyrosine hydroxylase-(TH, marker for dopaminergic neurons) and neuronal NO synthase- (nNOS, marker for NO containing neurons) expressing neurons in mesencephalic cultures. Some dopaminergic neurons also express nNOS giving further support for a pre-synaptic interaction between both systems. This is the first work demonstrating in mesencephalic cultured neurons a combined effect of an NO donor and an indirect DA agonist on specific DA uptake. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the effect of edible coatings based on methylcellulose (MC) and cassava starch (CS) to reduce oil uptake and improve water retention of chicken nuggets during deep fat frying. Edible coatings were prepared with I g of MC/100 g solution and 4 g of CS/100 g solution, with 25 or 55 g glycerol/100 g biopolymer. These solutions were applied to nugget samples before battering. Pre-fried and fried nuggets were analyzed to determine lipid and water contents. Color and texture were also measured in the fried nuggets. In general, there was no effect of the two concentrations of plasticizer of either of the biopolymers on the water retention of whole nuggets. But, higher oil uptake reduction, and consequently, lower lipid content was observed on nuggets coated with CS and 25% plasticizer. The coated samples were darker and had a brighter yellow color when compared with the control. There was also a significant decrease in the shearing force of the fried coated samples, indicating reduced hardness of these samples.
Resumo:
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle-like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake by P. falciparum-infected erythrocytes shows that at R and S stages, a time-increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time-increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.
Resumo:
Objective: This study investigated the effect of different sodium content diets on rat adipose tissue carbohydrate metabolism and insulin sensitivity. Methods and Procedures: Male Wistar rats were fed on normal- (0.5% Na+; NS), high- (3.12% Na+; HS), or low-sodium (0.06% Na+; LS) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail-cuff system. An intravenous insulin tolerance test (ivITT) was performed in fasted animals. At the end of each period, rats were killed and blood samples were collected for glucose and insulin determinations. The white adipose tissue (WAT) from abdominal and inguinal subcutaneous (SC) and periepididymal (PE) depots were weighed and processed for adipocyte isolation and measurement of in vitro rates of insulin-stimulated 2-deoxy-d-[H-3]-glucose uptake (2DGU) and conversion of -[U-C-14]-glucose into (CO2)-C-14. Results: After 6 weeks, HS diet significantly increased the BP, SC and PE WAT masses, PE adipocyte size, and plasma insulin concentration. The sodium dietary content did not influence the whole-body insulin sensitivity. A higher half-maximal effective insulin concentration (EC50) from the dose - response curve of 2DGU and an increase in the insulin-stimulated glucose oxidation rate were observed in the isolated PE adipocytes from HS rats. Discussion: The chronic salt overload enhanced the adipocyte insulin sensitivity for glucose uptake and the insulin-induced glucose metabolization, contributing to promote adipocyte hypertrophy and increase the mass of several adipose depots, particularly the PE fat pad.
Resumo:
Insulin-induced glucose uptake by skeletal muscle results from Akt2 activation and is severely impaired during insulin resistance Recently, we and others have demonstrated that BMP9 improves glucose homeostasis in diabetic and non-diabetic rodents. However, the mechanism by which BMP9 modulates insulin action remains unknown. Here we demonstrate that Smad5. a transcription factor activated by BMP9, and Akt2. are upregulated in differentiated L6 myotubes. Smad5, rather than Smad1/8, is downregulated ""in vivo"" and ""in vitro"" by dexamethasone Smad5 knockdown decreased Akt2 expression and serine phosphorylation and insulin-induced glucose uptake, and increased the expression of the lipid phosphatase Ship2. Additionally, binding of Smad5 to Akt2 gene is decreased in dexamethasone-treated rats and Increased in L6 myotubes compared to myoblasts The present study indicates that Smad5 regulates glucose uptake in skeletal muscle by controlling Akt2 expression and phosphorylation These finding reveals Smad5 as a potential target for the therapeutic of type 2 diabetes. (C) 2010 Elsevier Ireland Ltd. All rights reserved.