22 resultados para LOUD CALLS
Resumo:
Sampling owls in a reliable and standardized way is not easy given their nocturnal habits. Playback is a widely employed technique to survey owls. We assessed the influence of wind speed, temperature, air humidity, and moon phase on the response rate of the Tropical Screech Owl Megascops choliba and the Burrowing Owl Athene cunicularia in southeast Brazil. Tropical Screech Owl occurs in scrubland and wooded habitats, whereas the Burrowing Owl inhabits open grasslands to grassland savannah. Sixteen survey points were systematically distributed in four different landscape types, ranging from open grassland to woodland savannah. Field work was conducted in 2004 from June to December, the reproductive season of the two owl species. Our study design consisted of eight field expeditions of five nights each; four expeditions occurred under full moon and four under new moon conditions. At each survey station, we performed a broadcast/listening sequence involving several calls and vocalizations from each species, starting with Tropical Screech Owl (the smaller species). From 112 sample periods for each species within their respective preferred habitats, we obtained 54 responses from Tropical Screech Owl (48% response rate) and 30 responses (27% response rate) from Burrowing Owl. We found that the response rate of Tropical Screech Owl increased under conditions of higher temperature and air humidity, while the response rate of Burrowing Owl was higher during full moon nights.
Resumo:
Anuran amphibians exhibit different patterns of energy substrate utilization that correlate with the intensity of vocal and locomotor activities. Given the remarkable differences among species in breeding and feeding strategies, and the different ways energy is used in the whole animal, the suggested correlations between calling and locomotor behavior and the level of energy substrates in the muscles responsible for such activities are more complex than previously reported. We explored the relationships between calling and locomotor behavior and energy supply to trunk and hindlimb muscles, respectively, within the ecologically diverse tree-frog genus Scinax. Specifically, we measured the relative amount of carbohydrates and lipids in these two groups of muscles, and in the liver of three species of Scinax that differ in vocal and locomotor performance, and compared our results with those of two other species for which comparable data are available. We also compared the contents of lipids and carbohydrates of conspecific males collected at the beginning and after 4 h of calling activity. The stomach content to potential feeding opportunities across species was also assessed in both groups of males. Scinax hiemalis and S. rizibilis exhibit comparatively low and episodic calling during long periods of activity whereas S. crospedospilus calls at higher rates over shorter periods. Male S. hiemalis had highest levels of trunk muscle glycogen followed by those of S. rizilbilis and S. crospedospilus, respectively. There was no correlation between total lipid content in trunk muscle and calling rate among different species, suggesting that other metabolic aspects may be responsible for the energetic support for vocal activity. The levels of lipids and carbohydrates in trunk and hindlimb muscles and liver of males collected at the beginning and 4 h into the calling period were similar across species, so the extent of energetic reserves does not appear to constrain vocal or locomotor activity. Finally, we found exceptionally high levels of carbohydrates and lipids in the liver of S. rizibilis, a trait perhaps related to a long and demanding breeding period.
Resumo:
Brachycephalus hermogenesi is an endemic leaf litter inhabitant of the Atlantic forest of southeastern Brazil, whose original distribution included a restricted area near the boundaries of the States of Sao Paulo and Rio de Janeiro. We were surprised to find out, while conducting herpetofaunal surveys at Estacao Biologica de Boraceia (EBB), that the background forest insect-like sound we have been searching for corresponded to calling individuals of the species. Males call during the day at high densities, hidden under the leaf litter. Individuals do not answer playback, seem to move very infrequently, and seem to ignore nearby calling activity. We gathered data on annual and daily vocal activity of the species at EBB, observing a total of 1,549 calls given by 31 focal individuals in November 2003 and 2005. The call varies from short single note calls to calls composed of groups of two to seven similar notes emitted at regular intervals. We also extend the known distribution of the species southward to the State of Sao Paulo.
Resumo:
The increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages of Plasmodium falciparum (50% inhibitory concentration [IC(50)] of 20.3 +/- 1.0 mu M). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage of P. falciparum and show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Our in vivo experiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasite Plasmodium berghei in mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates.
Resumo:
The antiparasitic property of peptides is believed to be associated with their interactions with the protozoan membrane, which calls for research on the identification of membrane sites capable of peptide binding. In this study we investigated the interaction of a lipophilicglutathioine peptide known to be effective against the African Sleeping Sickness (ASS - African Trypanosomiasis) and cell membrane models represented by Langmuir monolayers. It is shown that even small amounts of the peptide affect the monolayers of some phospholipids and other lipids, which points to a significant interaction. The latter did not depend on the electrical charge of the monolayer-forming molecules but the peptide action was particularly distinctive for cholesterol + sphingomyelin monolayers that roughly resemble rafts on a cell membrane. Using in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), we found that the orientation of the peptide is affected by the phospholipids and dioctadecyldimethylammonium bromide (DODAB), but not in monolayers comprising cholesterol + sphingomyelin. In this mixed monolayer resembling rafts, the peptide still interacts and has some induced order, probably because the peptide molecules are fitted together into a compact monolayer. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic glutathioine peptide, and this may have important implications in understanding how the peptide acts on specific sites of the protozoan membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The issue of smoothing in kriging has been addressed either by estimation or simulation. The solution via estimation calls for postprocessing kriging estimates in order to correct the smoothing effect. Stochastic simulation provides equiprobable images presenting no smoothing and reproducing the covariance model. Consequently, these images reproduce both the sample histogram and the sample semivariogram. However, there is still a problem, which is the lack of local accuracy of simulated images. In this paper, a postprocessing algorithm for correcting the smoothing effect of ordinary kriging estimates is compared with sequential Gaussian simulation realizations. Based on samples drawn from exhaustive data sets, the postprocessing algorithm is shown to be superior to any individual simulation realization yet, at the expense of providing one deterministic estimate of the random function.
Resumo:
When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MOP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional ""flat"" dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated. (C) 2011 Elsevier B.V. All rights reserved.