93 resultados para LOADED NANOCAPSULES
Resumo:
In the last decades, the incidence of histoplasmosis, a pulmonary fungal disease caused by Histoplasma capsulatum, has increased worldwide. In this context, vaccines for the prevention of this infection or therapies are necessary. Cell-free antigens (CFAgs) from H. capsulatum when administered for murine immunization purposes are able to confer protection and control of the infection, since they activate cellular immunity. However the most of vaccination procedures need several anti, gens administrations and immunoadjuvants, which are not approved for use in humans. The aim of this study was to develop and characterize a vaccination approach using biodegradable PLGA microspheres (MS) that could allow the controlled and/or sustained release of the encapsulated antigens from H. capsulatum. CFAgs-loaded MS presented a size less than 10 mu m, were marked engulfed by bone marrow-derived macrophages (BMDM phi) and induced the nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production by these cells. Our data show that CFAgs-loaded MS induce cell activation, suggesting an immunostimulant effect to be further investigated during immunization procedures. CFAgs-loaded MS present potential to be used as vaccine in order to confer protection against H. capsulatum infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, the photodynamic action of liposomes (LP) and nanocapsules (NC) containing Chloroaluminum phthalocyanine (CIAIPc), on the human melanoma cell (WM 1552C), was assessed. The light source was setup at 672 nm, which corresponds to the maximum absorption wavelength of the CIAIPc. Both colloidal carriers presented size in nanometric scale as well as negative zeta potential. The cellular damage was light dose dependent ranging from 30% of cell death at 70 mJ.cm(-2) to 90% of death at 700 mJ.cm(-2). However, the photocytotoxic effect of LP at 70 mJ.cm(-2) was slightly more efficient to induce cellular death than NC formulation. At 140 mJ.cm(-2), and 700 mJ.cm(-2) both nanocarriers were equally efficient to induce cellular damage. Therefore, in the present work, the maximum phototoxic effect was obtained with 700 mJ.cm(-2) of light dose, in combination with 0.29 mu g.mL(-1) of CIAIPc encapsulated into LP and NC. The cells were also positive to annexin V, after the PDT treatment with LP and NC, showing that one of the mechanisms of cellular death involved is apoptosis. In summary, the potential of LP and NC as a drug delivery system, in Photodynamic Therapy (PDT) against melanoma, has been confirmed using a lower concentration of the photosensitizer and lower light doses than that applied in current protocols. This is an innovative proposal to treat melanoma cell lines that until now have not received the benefit of the PDT protocol for treatment.
Resumo:
The present study investigated the potential use of topical formulations containing marigold extract (ME) (Calendula officinalis extract) against ultraviolet (UV) B irradiation-induced skin damage. The physical and functional stabilities, as well as the skin penetration capacity, of the different topical formulations developed were evaluated. In addition, the in vivo capacity to prevent/treat the UVB irradiation-induced skin damage, in hairless mice, of the formulation with better skin penetration capacity was investigated. All of the formulations were physically and functionally stable. The gel formulation [Formulation 3 (F3)] was the most effective for the topical delivery of ME, which was detected as 0.21 mu g/cm(2) of narcissin and as 0.07 mu g/cm(2) of the rutin in the viable epidermis. This formulation was able to maintain glutathione reduced levels close to those of nonirradiated animals, but did not affect the gelatinase-9 and myeloperoxidase activities increased by exposure to UVB irradiation. In addition, F3 reduced the histological skin changes induced by UVB irradiation that appear as modifications of collagen fibrils. Therefore, the photoprotective effect in hairless mice achieved with the topical application of ME in gel formulation is most likely associated with a possible improvement in the collagen synthesis in the subepidermal connective tissue. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:2182-2193, 2011
Resumo:
Objectives The aim of this study was to histomorphometrically evaluate the influence of interimplant distances (ID) and implant placement depth on bone remodeling around contiguous Morse cone connection implants with `platform-shifting` in a dog model. Material and methods Bilateral mandibular premolars of six dogs were extracted, and after 12 weeks, each dog received 8 implants, four placed 1.5 mm subcrestally (SCL) on one side of the mandible and four placed equicrestally (ECL) on the other side, alternating the ID of 2 and 3 mm. The experimental groups were SCL with IDs of 2 mm (2 SCL) and 3 mm (3 SCL) and ECL with IDs of 2 mm (2 ECL) and 3 mm (3 ECL). Metallic crowns were immediately installed. After 8 weeks, the animals were euthanized and histomorphometric analyses were performed to compare bone remodeling in the groups. Results The SCL groups` indices of crestal bone resorption were significantly lower than those of ECL groups. In addition, the vertical bone resorption around the implants was also numerically inferior in the SCL groups, but without statistical significance. No differences were obtained between the different IDs. All the groups presented similar good levels of bone-to-implant contact and histological bone density. Conclusion The subcrestal placement of contiguous Morse cone connection implants with `platform shifting` was more efficient in preserving the interimplant crestal bone. The IDs of 2 and 3 mm did not affect the bone remodeling significantly under the present conditions. To cite this article:Barros RRM, Novaes AB Jr., Muglia VA, Iezzi G, Piattelli A. Influence of interimplant distances and placement depth on peri-implant bone remodeling of adjacent and immediately loaded Morse cone connection implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 371-378.doi: 10.1111/j.1600-0501.2009.01860.x.
Resumo:
Background: The role of osteocytes in bone structure and function remains partially unresolved. Their participation in mechanotransduction, i.e., the conversion of a physical stimulus into a cellular response, has been hypothesized. The present study was an evaluation of the osteocyte density in the peri-implant bone of immediately loaded and submerged dental implants. Methods: Fourteen male patients were included in the study; all of them were partially edentulous and needed a posterior mandibular restoration. Implants were inserted in these areas; half of the sample was loaded immediately (included in a fixed provisional prosthesis on the same day as implant surgery), whereas the other half was left to heal submerged. Fourteen implants (seven immediately loaded and seven unloaded) were retrieved with a trephine after a healing period of 8 weeks. The specimens were treated to obtain thin ground sections, and histomorphometry was used to evaluate the osteocyte index in the peri-implant bone. Results: A higher and statistically significant number of osteocytes was found in the peri-implant bone around immediately loaded implants (P=0.0081). A correlation between the percentage of bone-implant contact and osteocyte density was found for immediately loaded implants (P=0.0480) but not for submerged implants (P=0.2667). Conclusion: The higher number of osteocytes in the peri-implant bone around immediately loaded implants could be related to the functional adaptation required by the loading stimulus, which also explains the hypothesized involvement of the osteocytes in the maintenance of the bone matrix. J Periodontol 2009;80:499-504.
Resumo:
Purpose: This clinical study aimed to evaluate initial, 4-months, and 1-year stability of immediately loaded dental implants inserted according to a protocol of lower rehabilitation with prefabricated bars. Materials and Methods: The sample was composed of 11 edentulous patients. In each patient, 4 interforaminal implants were inserted. Immediately after implant installation, resonance frequency analysis (RFA) for each fixation was registered as well as after 4 months and 1 year with the prosthetic bar removed as it is a screwed system. Results: The clinical implant survival rate was 100%. The RFA showed an increase in stability after 4 months from 64.09 +/- 648 to 64.31 +/- 4.96 and I year, 67.11 +/- 4.37. The analysis of variance showed a statistically significant result (P = 0.015) among implant stability quotient values for the different periods evaluated. Tukey test results showed statistically significant differences between 1-year results and the initial periods but there was no statistically significant difference between initial and 4-month results (P > 0.05). Conclusion: These preliminary 1-year results indicate that immediate loading of mandibular dental implants using the studied prefabricated bars protocol is a reliable treatment as it is in accordance with the results described in the literature for other similar techniques. (Implant Dent 2009; 18:530-538)
Resumo:
We present a computer program developed for estimating penetrance rates in autosomal dominant diseases by means of family kinship and phenotype information contained within the pedigrees. The program also determines the exact 95% credibility interval for the penetrance estimate. Both executable (PenCalc for Windows) and web versions (PenCalcWeb) of the software are available. The web version enables further calculations, such as heterozygosity probabilities and assessment of offspring risks for all individuals in the pedigrees. Both programs can be accessed and down-loaded freely at the home-page address http://www.ib.usp.br/~otto/software.htm.
Resumo:
The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.
Resumo:
Purpose. Histological aspects were considered in order to evaluate the in vivo photoprotective effect of a w/o microemulsion containing quercetin against UVB irradiation-induced dermal damages. The toxicity in cell culture and the potential skin irritation resulting from topical application of this formulation were investigated. Methods. Mouse dorsal surfaces were treated topically with 300 mg of the unloaded and quercetin-loaded (0.3%, w/w) microemulsions before and after exposure to UVB (2.87 J/cm(2)) irradiation. The untreated control groups irradiated and non-irradiated were also evaluated. UVB-induced histopathological changes as well as the photoprotective effect of this formulation were evaluated considering the parameters of infiltration of inflammatory cells, epidermis thickening (basale and spinosum layers) and collagen and elastic fiber contents. The cytotoxicity of the reported formulation was evaluated in L929 mice fibroblasts by MTT assay and the skin irritation was investigated after topical application of both unloaded and quercetin-loaded microemulsions once a day for 15 days. Results. The results demonstrated that the w/o microemulsion containing quercetin reduced the incidence of histological skin alterations, mainly the connective-tissue damage, induced by exposure to UVB irradiation. This suggests that protective effects of this formulation against UV-induced responses are not secondary to the interference of UV transmission (i.e., blocking the UVB radiation from being absorbed by the skin), as is usually implied with UVB absorbers and sunscreens, but is instead due to different biological effects of this flavonoid. Furthermore, by evaluating the cytotoxic effect on L929 cells and histological aspects such as infiltration of inflammatory cells and epidermis thickness of hairless mice, the present study also demonstrated the lack of toxicity of the proposed system. Conclusion. Based on these mice models, a detailed characterization of the w/o microemulsion incorporating quercetin effects as a photochemoprotective agent on human skin is presented.
Resumo:
We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.
Resumo:
The objective of this work was to develop and validate a rapid Reversed-Phase High-Performance Liquid Chromatography method for the quantification of 3,5,3 '-triiodothyroacetic acid (TRIAC) in nanoparticles delivery system prepared in different polymeric matrices. Special attention was given to developing a reliable reproductive technique for the pretreatment of the samples. Chromatographic runs were performed on an Agilent 1200 Series HPLC with a RP Phenomenex (R) Gemini C18 (150 x 4, 6 mm i.d., 5 mu m) column using acetonitrile and triethylamine buffer 0.1% (TEA) (40 : 60 v/v) as a mobile phase in an isocratic elution, pH 5.6 at a flow rate of 1 ml min(-1). TRIAC was detected at a wavelength of 220 nm. The injection volume was 20 mu l and the column temperature was maintained at 35 degrees C. The validation characteristics included accuracy, precision, specificity, linearity, recovery, and robustness. The standard curve was found to have a linear relationship (r(2) - 0.9996) over the analytical range of 5-100 mu g ml(-1) . The detection and quantitation limits were 1.3 and 3.8 mu g ml(-1), respectively. The recovery and loaded TRIAC in colloidal system delivery was nearly 100% and 98%, respectively. The method was successfully applied in polycaprolactone, polyhydroxybutyrate, and polymethylmethacrylate nanoparticles.
Resumo:
The objective of this study was to validate the Piper Fatigue Scale-Revised (PFS-R) for use in Brazilian culture. Translation of the PFS-R into Portuguese and validity and reliability tests were performed. Convenience samples in Brazil we as follows: 584 cancer patients (mean age 57 +/- 13 years; 51.3% female); 184 caregivers (mean age 50 +/- 12.7 years; 65.8% female); and 189 undergraduate nursing students (mean age 21.6 +/- 2.8 years; 96.2% female); Instruments used were as follows: Brazilian PFS, Beck Depression Inventory (BDI), and Karnofsky Performance Scale (KPS). The 22 items of the Brazilian PFS loaded well (factor loading > 0.35) on three dimensions identified by factor analysis (behavioral, affective, and sensorial-psychological). These dimensions explained 65% of the variance. Internal consistency reliability was very good (Cronbach`s alpha ranged from 0.841 to 0.943 for the total scale and its dimensions). Cancer patients and their caregivers completed the Brazilian PFS twice for test-retest reliability and results showed good stability (Pearson`s r a parts per thousand yenaEuro parts per thousand 0,60, p < 0,001). Correlations among the Brazilian PFS and other scales were significant, in hypothesized directions, and mostly moderate contributing to divergent (Brazilian PFS x KPS) and convergent validity (Brazilian PFS x BDI). Mild, moderate, and severe fatigue in patients were reported by 73 (12.5%), 167 (28.6%), and 83 (14.2%), respectively. Surprisingly, students had the highest mean total fatigue scores; no significant differences were observed between patients and caregivers showing poor discriminant validity. While the Brazilian PFS is a reliable and valid instrument to measure fatigue in Brazilian cancer patients, further work is needed to evaluate the discriminant validity of the scale in Brazil.
Resumo:
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an investigation of design code provisions for steel-concrete composite columns. The study covers the national building codes of United States, Canada and Brazil, and the transnational EUROCODE. The study is based on experimental results of 93 axially loaded concrete-filled tubular steel columns. This includes 36 unpublished, full scale experimental results by the authors and 57 results from the literature. The error of resistance models is determined by comparing experimental results for ultimate loads with code-predicted column resistances. Regression analysis is used to describe the variation of model error with column slenderness and to describe model uncertainty. The paper shows that Canadian and European codes are able to predict mean column resistance, since resistance models of these codes present detailed formulations for concrete confinement by a steel tube. ANSI/AISC and Brazilian codes have limited allowance for concrete confinement, and become very conservative for short columns. Reliability analysis is used to evaluate the safety level of code provisions. Reliability analysis includes model error and other random problem parameters like steel and concrete strengths, and dead and live loads. Design code provisions are evaluated in terms of sufficient and uniform reliability criteria. Results show that the four design codes studied provide uniform reliability, with the Canadian code being best in achieving this goal. This is a result of a well balanced code, both in terms of load combinations and resistance model. The European code is less successful in providing uniform reliability, a consequence of the partial factors used in load combinations. The paper also shows that reliability indexes of columns designed according to European code can be as low as 2.2, which is quite below target reliability levels of EUROCODE. (C) 2009 Elsevier Ltd. All rights reserved.