23 resultados para L-ARGININE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of nitric oxide (NO) in granulomas of Paracoccidioides brasiliensis-infected inducible NO synthase-deficient C57BL/6 mice (iNOS KO) and their wild-type counterparts and its association with osteopontin (OPN) and matrix metalloproteinases (MMPs) was studied. At 15 days after infection (DAI), iNOS KO mice showed compact and necrotic granulomas with OPN+ macrophages and multinucleated giant cells, whereas wild-type mice developed loose granulomas with many fungi and OPN+ cells distributed throughout the tissue. In addition, high OPN levels and fungal load were observed in iNOS KO mice. Both experimental groups had MMP-9 activity. At 120 DAI, iNOS KO had smaller granulomas with OPN+ cells, lower OPN levels, lower fungal load and decreased MMP-9 activity compared with wild-type mice. These findings suggest that NO has an important role in granuloma modulation, by controlling OPN and MMP production, as well as by inducing loose granulomas formation and fungal dissemination, resulting, at later phases, in progression of paracoccidioidomycosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS) inhibitors are largely used to evaluate the NO contribution to pulmonary allergy, but contrasting data have been reported. In this study, pharmacological, biochemical and pharmacokinetic assays were performed to compare the effects of acute and long-term treatment of BALB/C mice with the non-selective NOS inhibitor L-NAME in ovalbumin (OVA)-challenged mice. Acute L-NAME treatment (50 mg/kg, gavage) significantly reduced the eosinophil number in bronchoalveolar lavage fluid (BALF). The inducible NOS (iNOS) inhibitor aminoguanidine (20 mg/kg/day in the drinking water) also significantly reduced the eosinophil number in BALF In contrast, 3-week L-NAME treatment (50 and 150 mg/kg/day in the drinking water) significantly increased the pulmonary eosinophil influx. The constitutive NOS (cNOS) activity in brain and lungs was reduced by both acute and 3-week L-NAME treatments. The pulmonary iNOS activity was reduced by acute L-NAME (or aminoguanidine), but unaffected by 3-week L-NAME treatment. Acute L-NAME (or aminoguanidine) treatment was more efficient to reduce the NO(x) levels compared with 3-week L-NAME treatment. The pharmacokinetic study revealed that L-NAME is not bioavailable when given orally. After acute L-NAME intake, serum concentrations of the metabolite N(omega)-nitro-L-arginine decreased from 30 min to 24 h. In the 3-week L-NAME treatment, the N(omega)-nitro-L-arginine concentration was close to the detection limit. In conclusion, 3-week treatment with L-NAME yields low serum N(omega)-nitro-L-arginine concentrations, causing preferential inhibition of cNOS activity. Therefore, eosinophil influx potentiation by 3-week L-NAME treatment may reflect removal of protective cNOS-derived NO, with no interference on the ongoing inflammation due to iNOS-derived NO. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formaldehyde (FA) exposure induces upper airways irritation and respiratory abnormalities, but its mechanisms are not understood. Since mast cells are widely distributed in the airways, we hypothesized that FA might modify the airways reactivity by mechanism involving their activation. Tracheal rings of rats were incubated with Dulbecco`s modified medium culture containing FA (0.1 ppm) in 96-well plastic microplates in a humid atmosphere. After 30 min, 6 h, and 24-72 h, the rings were suspended in an organ bath and dose-response curve to methacholine (MCh) were determined. incubation with FA caused a transient tracheal hyperresponsiveness to MCh that was independent from tracheal epithelium integrity. Connective tissue mast cell depletion caused by compound 48/80 or mast cell activation by the allergic reaction, before exposure of tracheal rings to FA prevented the increased responsiveness to MCh. LTB(4) concentrations were increased in the culture medium of tracheas incubated with FA for 48 h, whereas the LTB(4)-receptor antagonist MK886 (1 mu M) added before FA exposure rendered the tracheal rings normoreactive to MCh. In addition, FA exposure did not cause hyperresponsiveness in tracheal segments incubated with L-arginine (1 mu M). We suggest that airway connective tissue mast cells constitute the target and may provide the increased LTB(4) generation as well as an elevated consumption of NO leading to tracheal hyperresponsiveness to MCh. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The midbrain periaqueductal gray (PAG) is part of the brain system involved in active defense reactions to threatening stimuli. Glutamate N-methyl-d-aspartate (NMDA) receptor activation within the dorsal column of the PAG (dPAG) leads to autonomic and behavioral responses characterized as the fear reaction. Nitric oxide (NO) has been proposed to be a mediator of the aversive action of glutamate, since the activation of NMDA receptors in the brain increases NO synthesis. We investigated the effects of intra-dPAG infusions of NMDA on defensive behaviors in mice pretreated with a neuronal nitric oxide synthase (nNOS) inhibitor [N omega-propyl-l-arginine (NPLA)], in the same midbrain site, during a confrontation with a predator in the rat exposure test (RET). Male Swiss mice received intra-dPAG injections of NPLA (0.1 or 0.4 nmol/0.1 mu l), and 10 min later, they were infused with NMDA (0.04 nmol/0.1 mu l) into the dPAG. After 10 min, each mouse was placed in the RET. NMDA treatment enhanced avoidance behavior from the predator and markedly increased freezing behavior. These proaversive effects of NMDA were prevented by prior injection of NPLA. Furthermore, defensive behaviors (e.g., avoidance, risk assessment, freezing) were consistently reduced by the highest dose of NPLA alone, suggesting an intrinsic effect of nitric oxide on defensive behavior in mice exposed to the RET. These findings suggest a potential role of glutamate NMDA receptors and NO in the dPAG in the regulation of defensive behaviors in mice during a confrontation with a predator in the RET.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The eukaryotic translation initiation factor 5A (eIF5A) contains a special amino acid residue named hypusine that is required for its activity, being produced by a post-translational modification using spermidine as substrate. Stem cells from rat skeletal muscles (satellite cells) were submitted to differentiation and an increase of eIF5A gene expression was observed. Higher content of eIF5A protein was found in satellite cells on differentiation in comparison to non-differentiated satellite cells and skeletal muscle. The treatment with NI-guanyl- 1,7-diaminoheptane (GC7), a hypusination inhibitor, reversibly abolished the differentiation process. In association with the differentiation blockage, an increase of glucose consumption and lactate production and a decrease of glucose and palmitic acid oxidation were observed. A reduction in cell proliferation and protein synthesis was also observed. L-Arginine, a spermidine precursor and partial suppressor of muscle dystrophic phenotype, partially abolished the GC7 inhibitory effect on satellite cell differentiation. These results reveal a new physiological role for eIF5A and contribute to elucidate the molecular mechanisms involved in muscle regeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sporulation stage of the aquatic fungus Blastocladiella emersonii culminates with the formation and release to the medium of a number of zoospores, which are motile cells responsible for the dispersal of the fungus. The presence in the sporulation solution of 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a potent and selective inhibitor of nitric oxide-sensitive guanylyl cyclases, completely prevented biogenesis of the zoospores. In addition, this compound was able to significantly reduce cGMP levels, which increase drastically during late sporulation, suggesting the existence of a nitric oxide-dependent mechanism for cGMP synthesis. Furthermore, increased levels of nitric oxide-derived products were detected during sporulation by fluorescence assays using DAF-2 DA, whose signal was drastically reduced in the presence of the nitric oxide synthase inhibitor N omega-Nitro-L-arginine methyl ester (L-NAME). These results were confirmed by quantitative chemiluminescent determination of the intracellular levels of nitric oxide-derived products. A putative nitric oxide synthase (NOS) activity was detected throughout sporulation, and this enzyme activity decreased significantly when L-NAME and 1-[2-(Trifluoromethyl)phenyl]imidazole (TRIM) were added to the assays. NOS assays carried out in the presence of EGTA showed decreased enzyme activity, suggesting the involvement of calcium ions in enzyme activation. Additionally, expressed sequence tags (ESTs) encoding putative guanylyl cyclases and a cGMP-phosphodiesterase were found in B. emersonii EST database (http://blasto.iq.usp.br), and the mRNA levels of the corresponding genes were observed to increase during sporulation. Altogether, data presented here revealed the presence and expression of guanylyl cyclase and cGMP phosphodiesterase genes in B. emersonii and provided evidence of a Ca(2+)-(center dot)NO-cGMP signaling pathway playing a role in zoospore biogenesis. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neurohypophyseal hormone arginine vasopressin (AVP) is a classic mitogen in many cells. In K-Ras-dependent mouse Y1 adrenocortical malignant cells, AVP elicits antagonistic responses such as the activation of the PKC and the ERK1/2 mitogenic pathways to down-regulate cyclin D1 gene expression, which induces senescence-associated beta-galactosidase (SA-beta Gal) and leads to cell cycle arrest. Here, we report that in the metabolic background of Y1 cells, PKC activation either by AVP or by PMA inhibits the PI3K/Akt pathway and stabilises the p27(Kip1) protein even in the presence of the mitogen fibroblast growth factor 2 (FGF2). These results suggest that p27(Kip1) is a critical signalling node in the mechanisms underlying the survival of the Y1 cells. In Y1 cells that transiently express wild-type p27(Kip1), AVP caused a severe reduction in cell survival, as shown by clonogenic assays. However, AVP promoted the survival of Y1 cells transiently expressing mutant p27-S10A or mutant p27-T187A, which cannot be phosphorylated at Ser10 and Thr187, respectively. In addition, PKC activation by PMA mimics the toxic effect caused by AVP in Y1 cells, and inhibition of PKC completely abolishes the effects caused by both PMA and AVP in clonogenic assays. The vulnerability of Y1 cells during PKC activation is a phenotype conditioned upon K-ras oncogene amplification because K-Ras down-regulation with an inducible form of the dominant-negative mutant H-RasN17 has resulted in Y1 cells that are resistant to AVP`s deleterious effects. These data show that the survival destabilisation of K-Ras-dependent Y1 malignant cells by AVP requires large quantities of the p27(Kip1) protein as well as phosphorylation of the p27(Kip1) protein at both Ser10 and Thr187. (C) 2011 Elsevier B.V. All rights reserved.