37 resultados para Inter-polyelectrolyte-complexes
Resumo:
A simple method was developed for spectrophotometric determination of some nonsteroidal anti-inflammatory drugs (meloxicam, piroxicam and tenoxicam) based on the reduction of copper(II) in buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-biquinoline acid. The-biquinoline acid. The absorbance values at 558 nm, characteristic of the formed Cu(I)/4,4'-dicarboxy-2,2'-biquinoline complexes, are linear with the concentrations (5.7-40 mmol L(-1), n = 5) of these oxicams (meloxicam r = 0.998; piroxicam and tenoxicam r = 0.999). The limit of detection values, in mmol L(-1), calculated for meloxicam (2.7), piroxicam (1.2) and tenoxicam (1.3) was obtained with 99% confidence level and the relative standard deviations for meloxicam (3.1%), piroxicam (5.1%) and tenoxicam (1.2%) were calculated using a 25 mmol L(-1) solution (n = 7). Mean recovery values for meloxicam, piroxicam and tenoxicam forms were 100 +/- 6.9, 98.6 +/- 3.6 and 99.4 +/- 2.5%, respectively. The conditional potential of Cu(II)/Cu(I) in complex medium of 7.5 mmol L(-1) BCA was determined to be 629 +/- 11 mV vs. NHE.
Resumo:
This study analyzed inter-individual variability of the temporal structure applied in basketball throwing. Ten experienced male athletes in basketball throwing were filmed and a number of kinematic movement parameters analyzed. A biomechanical model provided the relative timing of the shoulder, elbow and wrist joint movements. Inter-individual variability was analyzed using sequencing and relative timing of tem phases of the throw. To compare the variability of the movement phases between subjects a discriminant analysis and an ANOVA were applied. The Tukey test was applied to determine where differences occurred. The significance level was p = 0.05. Inter-individual variability was explained by three concomitant factors: (a) a precision control strategy, (b) a velocity control strategy and (c) intrinsic characteristics of the subjects. Therefore, despite the fact that some actions are common to the basketball throwing pattern each performed demonstrated particular and individual characteristics.
Resumo:
This investigation presents a comprehensive characterization of magnetic and transport properties of an interesting superconducting wire, Nb-Ti -Ta, obtained through the solid-state diffusion between Nb-12 at.% Ta alloy and pure Ti. The physical properties obtained from magnetic and transport measurements related to the microstructure unambiguously confirmed a previous proposition that the superconducting currents flow in the center of the diffusion layer, which has a steep composition variation. The determination of the critical field also confirmed that the flux line core size is not constant, and in addition it was possible to determine that, in the center of the layer, the flux line core is smaller than at the borders. A possible core shape design is proposed. Among the wires studied, the one that presented the best critical current density was achieved for a diffusion layer with a composition of about Nb-32% Ti-10% Ta, obtained with a heat treatment at 700 degrees C during 120 h, in agreement with previous studies. It was determined that this wire has the higher upper critical field, indicating that the optimization of the superconducting behavior is related to an intrinsic property of the ternary alloy.
Resumo:
Experimental results for the activity of water in aqueous solutions of 10 single, synthetic polyelectrolytes (polysodium acrylate, polysodium methacrylate, polyammonium acrylate, polysodium ethylene sulfonate, and polysodium styrene sulfonate) and sodium chloride at 298.2 K are presented. The experimental work was performed by applying the isopiestic method with sodium chloride as a reference substance. As expected, the activity of water decreases when the concentration of a polyelectrolyte and/or sodium chloride increases. At constant concentration of a polyelectrolyte and sodium chloride, the activity of water depends on the monomer unit and the molecular mass of the polyelectrolyte. The new data are to be used in future work to develop and test models for the Gibbs excess energy of aqueous solutions of polyelectrolytes.
Resumo:
Pitzer`s equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer`s model (combining a long-range term, based on the Debye-Huckel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid-liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Novel magnetic nanocomposite films with controlled morphology were produced via the electrostatic layer-by-layer assembly of cationic CoFe(2)O(4) nanoparticles and anionic poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonic acid) (PEDOT:PSS) complex. The electrostatic interaction between nanoparticle and the polyelectrolyte complex ensured a stepwise growth of the nanocomposite film with virtually identical amounts of materials being adsorbed at each deposition cycle as observed by UV-vis spectroscopy. AFM images acquired under the tapping mode revealed a globular morphology with dense and continuous layers of nanoparticles with voids being filled with polymeric material. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to attain and characterize ternary complexes of simvastatin, beta-cyclodextrin (beta CD) and different polymers, and then select those that lead to a greater increase in drug solubility. The complexes were prepared with the co-evaporation method and the polymers used were polyethylene glycol 1500, polyethylene glycol 4000, povidone, copovidone, crospovidone, maltodextrin and hydroxypropyl methyl cellulose. The characterization of complexes was carried out through aqueous solubility, DSC and TG. There was an increase in solubility for all the complexes prepared with beta CD and the different polymers, but only when crospovidone and maltodextrin were used was there a significant difference observed between the solubility of the physical mixture and that of the complex. The DSC curves indicate that the non-complexed drug is even in the sample of the complex with higher solubility, thus none of the polymers was able to achieve a total complexation of the drug.
Resumo:
The aim of this study was to determine whether inclusion complexes between 2-hydroxypropyl-beta-cyclodextrin (HP beta CD) and finasteride (FIN) are formed, and to characterize these. Equimolar FIN/HP beta CD solid systems in the presence or absence of 0.1% (w/v) of polyvinylpyrrolidone K30 (PVP K30) or 0.3% of chitosan were prepared by coevaporation and freeze-drying methods. The systems were characterized by phase solubility, NMR, DSC, and XRD analysis. The results suggest that true binary and ternary inclusion complexes were formed. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Obtention and Evaluation of Inclusion Complexes of Furosemide with beta-ciclodextrin and hidroxipropil-beta-ciclodextrin: Effects on Drug`s Dissolution Properties. The purpose of this study was to prepare, characterize and evaluate the dissolution behavior of inclusion complexes of furosemide with beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD). Solid complexes of furosemide with P-CD and-HP-beta-CD were prepared by using a freeze-drying method. Physical mixtures were prepared for comparison. The inclusion complexes were characterized by differential scanning calorimetry (DSC), Infrared (IR) and dissolution test. ""In vitro"" dissolutions assays were performed at pH 1,2; pH 4,5 and pH 6,8 media for a 60 min period. Statistical analysis employing ANOVA and Tukey`s Test, for the dissolution efficiency values (ED%), showed that complexation of furosemide with both cyclodextrins improved significantly ED% of the drug in all tested media, suggesting a minor pH influence on dissolution properties of the drug.
Resumo:
Food foams such as marshmallow, Chantilly and mousses have behavior and stability directly connected with their microstructure, bubble size distribution and interfacial properties. A high interfacial tension inherent to air/liquid foams interfaces affects its stability, and thus it has a direct impact on processing, storage and product handling. In this work, the interactions of egg albumin with various types of polysaccharides were investigated by drop tensiometry, interfacial rheology and foam stability. The progressive addition of egg albumin and polysaccharide in water induced a drop of the air-water surface tension which was dependent on the pH and polysaccharide type. At pH 4, that is below the isoeletric point of egg albumen (pI = 4.5) the surface tension was decreased from 70 mN/m to 42 mN/m by the presence of the protein, and from 70 mN/m to 43 mN/m, 40 mN/m and 38 mN/m by subsequent addition of xanthan, guar gum and kappa-carrageenan, respectively. At pH 7.5 the surface tension was decreased from 70 mN/m to 43 mN/m by the simultaneous presence of the protein and kappa-carrageenan. However, a higher surface tension of 48 and 50 mN/m was found when xanthan and guar gum were added, respectively, when compared with carrageenan addition. The main role on the stabilization of protein-polysaccharide stabilized interfaces was identified on the elasticity of the interface. Foam stability experiments confirmed that egg-albumin/kappa-carrageenan at pH below the protein isoeletric point are the most efficient systems to stabilize air/water interfaces. These results clearly indicate that protein-polysaccharide coacervation at the air/water interface is an efficient process to increase foam stability. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 angstrom resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 angstrom resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 angstrom resolution. Comparisons of these three hAPRT structures with other `type I` PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPR Comparative analyses presented here provide structural evidence to propose the role of Glu 104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.
Resumo:
Cyclodextrins (CDs) are annular oligosaccharides containing 6-12 glucose unities joined together by alpha-1,4 bonds. They have a conical-truncated shape with a lipophilic cavity in which different molecules can be included resulting in a stable inclusion complex. The cyclodextrins have been widely applied in pharmaceutical technology with the objective of increasing the solubility, stability and bioavailability of drugs in different pharmaceutical dosage forms, such as tablets. In order to obtain beta-CD tablets, liquid dispersions of drug/beta-CD are usually submitted to different drying processes, like spray-drying, freeze-drying or slow evaporation, being this dry material added to a number of excipients. However, such drying processes can generate particulate materials showing problems of flow and compressibility, needing their conversion into granulates by means of wetting with granulation liquid followed by additional drying. In this work, the main objective was to evaluate the preparation of tablets without the need of this additional drying step. For this purpose an aqueous dispersion containing acetaminophen/beta-CD complex and cornstarch was dried using a spouted bed and the obtained granules were compressed in tablets. Acetaminophen was used as model drug due to its low water solubility and the inexpensive and widely available cornstarch was chosen as excipient. Acetaminophen powder was added into a beta-cyclodextrin solution prepared in distilled water at 70 degrees C. Stirring was kept until this dispersion cooled to room temperature. Then cornstarch was added and the resulting dispersion was dried in spouted bed equipment. This material was compressed into tablets using an Erweka Korsh EKO tablet machine. This innovative approach allowed the tablets preparation process to be carried out with fewer steps and represents a technological reliable strategy to produce beta-cyclodextrin inclusion complexes tablets. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The novel asymmetric metallo-organic triads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}(Ru(bpy)(2)Cl}](PF(6))(2) (5a,b) for which cis- and trans-B(4-py)BPFPH(2)=5,10-bis(pentafluorophenyl)-15,20-bis(4-pyridyl)porphyrin and 5,15-bis(pentafluorophenyl)-10,20-bis(4-pyridyl)porphyrin, respectively; Ac = acetate; py = pyridine and bpy = 2,2`-bipyridine, as well as their corresponding monosubstituted dyads cis- and trans-[B(4-py)BPFPH(2){Ru(3)O(Ac)(6)(py)(2)}]PF(6) (4a,b) have been structurally characterized via electrospray ionization mass spectrometry (ESI-MS and ESI-MS/MS). The ESI-MS of dyads 4a,b display two characteristic Ru-multicomponent clusters of isotopologue ions corresponding to singly charged ions 4a,b(+) of m/z 1629 and doubly charged ions [4a,b+H](2+) of m/z 815 and the triads 5a,b are detected by ESI-MS as the intact doubly charged cluster of isotopologue ions of m/z 1039 [5a,b](2+). The ESI-MS/MS of 4a,b(+), [4a,b+H](2+) and [5a,b](2+) reveal characteristic dissociation pathways, which confirm the structural assignments providing additional information on the intrinsic binding strengths of the gaseous ions. Although the gas-phase behavior of each pair of isomers was rather similar, the less symmetric dyads 4a,b are distinguished via the (1)H NMR spectral profile of the pyrrolic signals. Exploratory photophysical assays have shown that both modifying motifs alter the porphyrinic core emission profile, opening the possibility to use these asymmetric systems as photophysical devices. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The photochemical behavior of nitrosyl complexes Ru(salen)(NO)(OH(2))(+) and Ru(salen)(NO) Cl (salen = N, N`-ethylenebis-(salicylideneiminato) dianion) in aqueous solution is described. Irradiation with light in the 350-450 nm range resulted in nitric oxide (NO) release from both. For Ru(salen)(NO) Cl secondary photoreactions also resulted in chloride aquation. Thus, in both cases the final photoproduct is the diaquo cation Ru(III) (salen) (OH(2))(2)(+), for which pK(a)`s of 5.9 and 9.1 were determined for the coordinated waters. The pK(a) of the Ru(salen)(NO)(OH(2))+ cation was also determined as 4.5 +/- 0.1, and the relative acidities of these ruthenium aquo units are discussed in the context of the bonding interactions between Ru(III) and NO. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A multilayer organic film containing poly(acrylic acid) and chitosan was fabricated on a metallic support by means of the layer-by-layer technique. This film was used as a template for calcium carbonate crystallization and presents two possible binding sites where the nucleation may be initiated, either calcium ions acting as counterions of the polyelectrolyte or those trapped in the template gel network formed by the polyelectrolyte chains. Calcium carbonate formation was carried out by carbon dioxide diffusion, where CO, was generated from ammonium carbonate decomposition. The CaCO3 nanocrystals obtained, formed a dense, homogeneous, and continuous film. Vaterite and calcite CaCO3 crystalline forms were detected. (c) 2007 Elsevier B.V All rights reserved.