19 resultados para Intelligent Transportation Systems
Resumo:
This paper uses a fully operational inter-regional computable general equilibrium (CGE) model implemented for the Brazilian economy, based on previous work by Haddad and Hewings, in order to assess the likely economic effects of road transportation policy changes in Brazil. Among the features embedded in this framework, modelling of external scale economies and transportation costs provides an innovative way of dealing explicitly with theoretical issues related to integrated regional systems. The model is calibrated for 109 regions. The explicit modelling of transportation costs built into the inter-regional CGE model, based on origin-destination flows, which takes into account the spatial structure of the Brazilian economy, creates the capability of integrating the inter-regional CGE model with a geo-coded transportation network model enhancing the potential of the framework in understanding the role of infrastructure on regional development. The transportation model used is the so-called Highway Development and Management, developed by the World Bank, implemented using the software TransCAD. Further extensions of the current model specification for integrating other features of transport planning in a continental industrialising country like Brazil are discussed, with the goal of building a bridge between conventional transport planning practices and the innovative use of CGE models. In order to illustrate the analytical power of the integrated system, the authors present a set of simulations, which evaluate the ex ante economic impacts of physical/qualitative changes in the Brazilian road network (for example, a highway improvement), in accordance with recent policy developments in Brazil. Rather than providing a critical evaluation of this debate, they intend to emphasise the likely structural impacts of such policies. They expect that the results will reinforce the need to better specifying spatial interactions in inter-regional CGE models.
Resumo:
Introduction: The aim of this study was to assess the occurrence of apical root transportation after the use of Pro Taper Universal rotary files sizes 3 (F3) and 4 (F4). Methods: Instruments were worked to the apex of the original canal, always by the same operator. Digital subtraction radiography images were produced in buccolingual and mesiodistal projections. A total of 25 radiographs were taken from root canals of human maxillary first molars with curvatures varying from 23-31 degrees. Quantitative data were analyzed by intraclass correlation coefficient and Wilcoxon nonparametric test (P = .05). Results: Buccolingual images revealed a significantly higher degree of apical transportation associated with F4 instruments when compared with F3 instruments in relation to the original canal (Wilcoxon test, P = .007). No significant difference was observed in mesiodistal images (P = .492). Conclusions: F3 instruments should be used with care in curved canals, and F4 instruments should be avoided in apical third preparation of curved canals. (J Endod 2010;36:1052-1055)
Resumo:
Evaluate, through computerized tomography, canal transportation and centring ability of RaCe rotary instruments after preparation of mesiobuccal root canals in maxillary molar teeth. Twenty-seven teeth were submitted to three cone beam tomographic analyses, one preoperatively, and two after preparation with file size 35, .02 taper and size 50, .02 taper. Canal transportation and centring ability were measured with reference to the distance between the noninstrumented portion of the root canals and the mesial and distal periphery of the root, compared with images obtained after the preparation with size 35 and 50 instruments. Canal transportation after preparation with the size 35 file was 0.030 +/- 0.253 mm and after the size 50 file was 0.057 +/- 0.317 mm. The centring ratio values after preparation with the size 35 file was 0.42 +/- 0.32 and after the size 50 file was 0.54 +/- 0.29, with no significant statistical difference between the groups. RaCe instruments allowed the preparation of curved root canals with preparation diameters larger than those normally used with minimal canal transportation and adequate centring ability.
Resumo:
Objective. To evaluate the influence of shaft design on the shaping ability of 3 rotary nickel-titanium (NiTi) systems. Study design. Sixty curved mesial canals of mandibular molars were used. Specimens were scanned by spiral tomography before and after canal preparation using ProTaper, ProFile, and ProSystem GT rotary instruments. One-millimeter-thick slices were scanned from the apical end point to the pulp chamber. The cross-sectional images from the slices taken earlier and after canal preparation at the apical, coronal, and midroot levels were compared. Results. The mean working time was 137.22 +/- 5.15 s. Mean transportation, mean centering ratio, and percentage of area increase were 0.022 +/- 0.131 mm, 0.21 +/- 0.11, and 76.90 +/- 42.27%, respectively, with no statistical differences (P > .05). Conclusions. All instruments were able to shape curved mesial canals in mandibular molars to size 30 without significant errors. The differences in shaft designs seemed not to affect their shaping capabilities.