18 resultados para Industrial welfare


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-state fermentation obtained from different and low-cost carbon sources was evaluated to endocellulases and endoxylanases production by Aspergillus japonicus C03. Regarding the enzymatic production the highest levels were observed at 30 degrees C, using soy bran added to crushed corncob or wheat bran added to sugarcane bagasse, humidified with salt solutions, and incubated for 3 days (xylanase) or 6 days (cellulase) with 70% relative humidity. Peptone improved the xylanase and cellulase activities in 12 and 29%, respectively. The optimum temperature corresponded to 60 degrees C and 50-55 degrees C for xylanase and cellulase, respectively, both having 4.0 as optimum pH. Xylanase was fully stable up to 40 degrees C, which is close to the rumen temperature. The enzymes were stable in pH 4.0-7.0. Cu(++) and Mn(++) increased xylanase and cellulase activities by 10 and 64%, respectively. A. japonicus C03 xylanase was greatly stable in goat rumen fluid for 4 h during in vivo and in vitro experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of surface treatments on microtensile bond strength of luting resin cements to fiber posts. Materials and Methods: Forty-two quartz fiber posts (Light Post, RTD) were divided into 7 groups (n = 6) according to the surface treatment. I and 11: experimental patented industrial treatment consisting of zirconium oxide coating and silanization (RTD); III: industrial treatment followed by adhesive application (XPBond, Dentsply Caulk); IV: adhesive (XPBond); V: adhesive (Prime&Bond NT, Dentsply Caulk); VI: silane (Calibra Silane, Dentsply Caulk); VII: no treatment. Adhesives were used in the self-curing mode. Two cements (Sealbond, RTD - group 1, and Calibra, Dentsply Caulk - groups 11 to VII) were applied on the posts to produce cylindrical specimens. Post/cement interfaces were evaluated under SEM. The surface of the industrially coated posts was examined using energy dispersive analysis by x-ray. Cylinders were cut to obtain microtensile sticks that were loaded in tension at a crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed using Kruskal-Wallis analysis of variance followed by Dunn`s multiple range test for post-hoc comparisons (p < 0.05). Weibull analysis was also performed. Results: The post/cement bond strength was significantly higher on fiber posts treated industrially (I: 23.14 +/- 8.05 MPa; II: 21.56 +/- 7.07 MPa; III: 22.37 +/- 7.00 MPa) or treated with XPBond adhesive (IV: 21.03 +/- 5.34 MPa) when compared to Prime&Bond NT application (V: 14.05 +/- 5.06 MPa), silanization (VI: 6.31 +/- 4.60 MPa) or no treatment (VII: 4.62 +/- 4.31) of conventional fiber posts (p < 0.001). Conclusion: The experimental industrial surface treatment and the adhesive application enhanced fiber post to resin cement interfacial strength. Industrial pretreatment may simplify the clinical luting procedure.