119 resultados para Il-1
Resumo:
Epileptic seizures are hypersynchronous, paroxystic and abnormal neuronal discharges. Epilepsies are characterized by diverse mechanisms involving alteration of excitatory and inhibitory neurotransmission that result in hyperexcitability of the central nervous system (CNS). Enhanced neuronal excitability can also be achieved by inflammatory processes, including the participation of cytokines, prostaglandins or kinins, molecules known to be involved in either triggering or in the establishment of inflammation. Multiple inductions of audiogenic seizures in the Wistar audiogenic rat (WAR) strain are a model of temporal lobe epilepsy (TLE), due to the recruitment of limbic areas such as hippocampus and amygdata. In this study we investigated the modulation of the B-1 and B-2 kinin receptors expression levels in neonatal WARs as well as in adult WARs subjected to the TLE model. The expression levels of pro-inflammatory (IL-1 beta) and anti-inflammatory (IL-10) cytokines were also evaluated, as well as cyclooxygenase (COX-2). Our results showed that the B-1 and B-2 kinin receptors mRNAs were up-regulated about 7- and 4-fold, respectively, in the hippocampus of kindled WARs. On the other hand, the expressions of the IL-1 beta, IL-10 and COX-2 were not related to the observed increase of expression of kinin receptors. Based on those results we believe that the B, and B2 kinin receptors have a pivotal role in this model of TLE, although their participation is not related to an inflammatory process. We believe that kinin receptors in the CNS may act in seizure mechanisms by participating in a specific kininergic neurochemical pathway. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Lipopolysaccharide (LPS) stimulates cytoplasmic accumulation of pro-interleukin (IL)-1 beta. Activation of P2X(7) receptors stimulates conversion of pro-IL-1 beta into mature IL-1 beta, which is then secreted. Because both LPS (in vivo) and IL-1 beta (in vitro) decrease vascular reactivity to contractile agents, we hypothesized the following: 1) P2X(7) receptor activation contributes to LPS-induced vascular hyporeactivity, and 2) IL-1 beta mediates this change. Thoracic aortas were obtained from 12-week-old male C57BL/6 mice. The aortic rings were incubated for 24 h in Dulbecco`s modified Eagle`s medium, LPS, benzoylbenzoyl-ATP (BzATP; P2X(7) receptor agonist), LPS plus BzATP, oxidized ATP (oATP; P2X(7) receptor antagonist), or oATP plus LPS plus BzATP. After the treatment, the rings were either mounted in a myograph for evaluation of contractile activity or homogenized for IL-1 beta and inducible nitric-oxide synthase (iNOS) protein measurement. In endothelium-intact aortic rings, phenylephrine (PE)-induced contractions were not altered by incubation with LPS or BzATP, but they significantly decreased in aortic rings incubated with LPS plus BzATP. Treatment with oATP or IL-1ra (IL-1 beta receptor antagonist) reversed LPS plus BzATP-induced hyporeactivity to PE. In the presence of N(G)-nitro-L-arginine methyl ester or N-([3-(aminomethyl) phenyl] methyl) ethanimidamide (selective iNOS inhibitor), the vascular hyporeactivity induced by LPS plus BzATP on PE responses was not observed. BzATP augmented LPS-induced IL-1 beta release and iNOS protein expression, and these effects were also inhibited by oATP. Moreover, incubation of endothelium-intact aortic rings with IL-1 beta induced iNOS protein expression. Thus, activation of P2X 7 receptor amplifies LPS-induced hyporeactivity in mouse endothelium-intact aorta, which is associated with IL-1 beta-mediated release of nitric oxide by iNOS.
Resumo:
IL-33, a new member of the IL-1 family, signals through its receptor ST2 and induces T helper 2 (Th2) cytokine synthesis and mediates inflammatory response. We have investigated the role of IL-33 in antigen-induced hypernociception. Recombinant IL-33 induced cutaneous and articular mechanical hype rn ociception in a time- and dose-dependent manner. The hypernociception was inhibited by soluble (s) ST2 (a decoy receptor of IL-33), IL-1 receptor antagonist (IL-1ra), bosentan [a dual endothelin (ET)(A)/ETB receptor antagonist], clazosentan (an ETA receptor antagonist), or indomethacin (a cyclooxygenase inhibitor). IL-33 induced hypernociception in IL-18(-/-) mice but not in TNFR1(-/-) or IFN gamma(-/-) mice. The IL-33-induced hypernociception was not affected by blocking IL-15 or sympathetic amines (guanethidine). Furthermore, methylated BSA (mBSA)-induced cutaneous and articular mechanical hypernociception depended on TNFR1 and IFN gamma and was blocked by sST2, IL-1ra, bosentan, clazosentan, and indomethacin. mBSA also induced significant IL-33 and ST2 mRNA expression. Importantly, we showed that mBSA induced hypernociception via the IL-33 -> TNF alpha -> IL-1 beta -> IFN gamma -> ET-1 -> PGE(2) signaling cascade. These results therefore demonstrate that IL-33 is a key mediator of immune inflammatory hype rn ociception normally associated with a Th1 type of response, revealing a hitherto unrecognized function of IL-33 in a key immune pharmacological pathway that may be amenable to therapeutic intervention.
Resumo:
Objectives Interleukin 33 (IL-33) is a new member of the IL-1 family of cytokines which signals via its receptor, ST2 (IL-33R), and has an important role in Th2 and mast cell responses. This study shows that IL-33 orchestrates neutrophil migration in arthritis. Methods and results Methylated bovine serum albumin (mBSA) challenge in the knee joint of mBSA-immunised mice induced local neutrophil migration accompanied by increased IL-33R and IL-33 mRNA expression. Cell migration was inhibited by systemic and local treatments with soluble (s) IL-33R, an IL-33 decoy receptor, and was not evident in IL-33R-deficient mice. IL-33 injection also induced IL-33R-dependent neutrophil migration. Antigen- and IL-33-induced neutrophil migration in the joint was dependent on CXCL1, CCL3, tumour necrosis factor a (TNF alpha) and IL-1 beta synthesis. Synovial tissue, macrophages and activated neutrophils expressed IL-33R. IL-33 induces neutrophil migration by activating macrophages to produce chemokines and cytokines and by directly acting on neutrophils. Importantly, neutrophils from patients with rheumatoid arthritis successfully treated with anti-TNF alpha antibody (infliximab) expressed significantly lower levels of IL-33R than patients treated with methotrexate alone. Only neutrophils from patients treated with methotrexate alone or from normal donors stimulated with TNF alpha responded to IL-33 in chemotaxis. Conclusions These results suggest that suppression of IL-33R expression in neutrophils, preventing IL-33-induced neutrophil migration, may be an important mechanism of anti-TNF alpha therapy of inflammation.
Resumo:
IL-17 is an important cytokine in the physiopathology of rheumatoid arthritis (RA). However, its participation in the genesis of nociception during RA remains undetermined. In this study, we evaluated the role of IL-17 in the genesis of articular nociception in a model of antigen (mBSA)-induced arthritis. We found that mBSA challenge in the femur-tibial joint of immunized mice induced a dose-and time-dependent mechanical hypernociception. The local IL-17 concentration within the mBSA-injected joints increased significantly over time. Moreover, co-treatment of mBSA challenged mice with an antibody against IL-17 inhibited hypernociception and neutrophil recruitment. In agreement, intraarticular injection of IL-17 induced hypernociception and neutrophil migration, which were reduced by the pre-treatment with fucoidin, a leukocyte adhesion inhibitor. The hypernociceptive effect of IL-17 was also reduced in TNFR1(-/-) mice and by pre-treatment with infliximab (anti-TNF antibody), a CXCR1/2 antagonist or by an IL-1 receptor antagonist. Consistent with these findings, we found that IL-17 injection into joints increased the production of TNF-alpha, IL-1 beta and CXCL1/KC. Treatment with doxycycline (non-specific MMPs inhibitor), bosentan (ET(A)/ET(B) antagonist), indomethacin (COX inhibitor) or guanethidine (sympathetic blocker) inhibited IL-17-induced hypernociception. IL-17 injection also increased PGE(2) production, MMP-9 activity and COX-2, MMP-9 and PPET-1 mRNA expression in synovial membrane. These results suggest that IL-17 is a novel pro-nociceptive cytokine in mBSA-induced arthritis, whose effect depends on both neutrophil migration and various pro-inflammatory mediators, as TNF-alpha, IL-1 beta, CXCR1/2 chemokines ligands, MMPs, endothelins, prostaglandins and sympathetic amines. Therefore, it is reasonable to propose IL-17 targeting therapies to control this important RA symptom. (C) 2009 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
Background The treatment and prognosis of nasal polyposis (NP) may be influenced by transcription factors, but their expression is poorly understood. Objective To determine the expression of transcription factors [(nuclear factor-kappa B) NF-kappa B and (activator protein) AP-1], cytokines [IL-1 beta, TNF-alpha and (granulocytes and macrophage colony-stimulating factor) GM-CSF], growth factor (b-FGF), chemokine (eotaxin-2) and adhesion molecule (ICAM-1) in NP in comparison with nasal mucosa controls. Methods Cross-sectional study. Twenty biopsies of nasal polyps were compared with eight middle turbinate biopsies. p65, c-Fos, IL-1 beta, TNF-alpha, ICAM-1, b-FGF, eotaxin-2 and GM-CSF were analysed through RQ-PCR, and p65 and c-Fos were also analysed through Western blotting. Results NF-kappa B expression was increased in patients with NP when compared with control mucosa (P < 0.05), whereas AP-1 expression did not differ significantly between groups. Expressions of IL-1 beta, eotaxin-2 and b-FGF were also increased in patients with NP compared with controls (P < 0.05). Conclusions The transcription factor NF-kappa B is more expressed in NP than in control mucosa. This is important in NP because NF-kappa B can induce the transcription of cytokines, chemokines and adhesion molecules, which play an important role in the inflammatory process. Moreover, transcription factors influence the response to corticosteroids, which are the basis of NP treatment. Transcription factor AP-1 does not seem to have a significant role in the pathological process.
Resumo:
Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients, Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX I and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX I and 2 in the development of fibrosis by performing a COX I and 2 blockade immediately before IRI We subjected C57BI/6 male mice to 60 min of unilateral renal pedicle occlusion, Prior to surgery mice were either treated with indomethacin (IMT) at days -1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-poly me rase chain reaction for expression of transforming growth factor beta (TGF-beta), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-10, heme oxygenose 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen 1, and bone morphogenic protein 7 (BMP-7), To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle, Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-beta, MCP-1,TNF-alpha, IL-1-beta, vimentin, collagen 1, CTGF and IL-10 mRNA (all P < 0.05), Moreover, HO-I mRNA was increased in animals pretreated with IMT (P < 0.05) Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did rot reach statistical significance when compared with control expression levels, I he blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.
Resumo:
This study reports the in vivo stimulatory effects of Cramoll 1,4 on rat spleen lymphocytes as evidenced by an increase in intracellular reactive oxygen species (ROS) production, Ca(2+) levels, and interleukin (IL)-1 beta expression. Cramoll 1,4 extracted from seeds of the Leguminosae Cratylia mollis Mart., is a lectin with antitumor and lymphocyte mitogenic activities. Animals (Nine-week-old male albino Wistar rats, Rattus norvegicus) were treated with intraperitoneal injection of Cramoll 1,4 (235 mu g ml(-1) single dose) and, 7 days later, spleen lymphocytes were isolated and analyzed for intracellular ROS, cytosolic Ca(2+), and IL-6, IL-10, and IL-1 mRNAs. Cell viability was investigated by annexin V-FITC and 7-amino-actinomycin D staining. The data showed that in lymphocytes activated by Cramoll 1,4 the increase in cytosolic and mitochondrial ROS was related to higher cytosolic Ca(2+) levels. Apoptosis and necrosis were not detected in statistically significant values and thus the lectin effector activities did not induce lymphocyte death. In vivo Cramoll 1,4 treatment led to a significant increase in IL-1 beta but IL-6 and -10 levels did not change. Cramoll 1,4 had modulator activities on spleen lymphocytes and stimulated the Th2 response.
Resumo:
Bone loss associated with cyclosporin A (CsA) therapy can result in serious morbidity to patients. Intermittent administration of 1,25 Vitamin D and calcitonin reduces osteopenia in a murine model of postmenopausal osteoporosis. The purpose of this study was to evaluate the effects of this therapeutic approach on CsA-induced alveolar bone loss in rats. Forty male Wistar rats were allocated to four experimental groups according to the treatment received during 8 weeks: (1) CsA (10 mg/kg/day, s.c.); (2) 1,25 Vitamin D (2 mu g/kg, p.o.; in weeks 1, 3, 5, and 7) plus calcitonin (2 mu g/kg, i.p.; in weeks 2, 4, 6, and 8); (3) CsA concurrently with intermittent 1,25 Vitamin D and calcitonin administration; and (4) the control treatment group (vehicle). At the end of the 8-week treatment period, serum concentrations of bone-specific alkaline phosphatase, tartrate-resistant acid phosphatase (TRAP-5b), osteocalcin, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor alpha (TNF-alpha) were measured and an analysis of bone volume, bone surface, number of osteoblasts, and osteoclasts was performed. CsA administration resulted in significant alveolar bone resorption, as assessed by a lower bone volume and an increased number of osteoclasts, and increased serum bone-specific alkaline phosphatase, TRAP-5b, IL-1 beta, IL-6, and TNF-alpha concentrations. The intermittent administration of calcitriol and calcitonin prevented the CsA-induced osteopenic changes and the increased serum concentrations of TRAP-5b and inflammatory cytokines. Intermittent calcitriol/calcitonin therapy prevents CsA-induced alveolar bone loss in rats and normalizes the production of associated inflammatory mediators.
Resumo:
Temporomandibular disorders represent one of the major challenges in dentistry therapeutics. This study was undertaken to evaluate the time course of carrageenan-induced inflammation in the rat temporomandibular joint (TMJ) and to investigate the role of tachykinin NK(1) receptors. Inflammation was induced by a single intra-articular (i.art.) injection of carrageenan into the left TMJ (control group received sterile saline). Inflammatory parameters such as plasma extravasation, leukocyte influx and mechanical allodynia (measured as the head-withdrawal force threshold) and TNF alpha and IL-1 beta concentrations were measured in the TMJ lavages at selected time-points. The carrageenan-induced responses were also evaluated after treatment with the NK(1) receptor antagonist SR140333. The i.art. injection of carrageenan into the TMJ caused a time-dependent plasma extravasation associated with mechanical allodynia, and a marked neutrophil accumulation between 4 and 24 h. Treatment with SR140333 substantially inhibited the increase in plasma extravasation and leukocyte influx at 4 and 24 h, as well as the production of TNF alpha and IL-1 beta into the joint cavity, but failed to affect changes in head-withdrawal threshold. The results obtained from the present TMJ-arthritis model provide, for the first time, information regarding the time course of this experimental inflammatory process. In addition, our data show that peripheral NK(1) receptors mediate the production of both TNF alpha and IL-1 beta in the TMJ as well as some of the inflammatory signs, such as plasma extravasation and leukocyte influx, but not the nociceptive component. 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.
Resumo:
This work explored the role of inhibition of cyclooxygenases (COXs) in modulating the inflammatory response triggered by acute kidney injury. C57Bl/6 mice were used. Animals were treated or not with indomethacin (IMT) prior to injury (days -1 and 0). Animals were subjected to 45 min of renal pedicle occlusion and sacrificed at 24 h after reperfusion. Serum creatinine and blood urea nitrogen, reactive oxygen species (ROS), kidney myeloperoxidase (MPO) activity, and prostaglandin E2 (PGE(2)) levels were analyzed. Tumor necrosis factor (TNF)-alpha, t-bet, interleukin (IL)-10, IL-1 beta, heme oxygenase (HO)-1, and prostaglandin E synthase (PGES) messenger RNA (mRNA) were studied. Cytokines were quantified in serum. IMT-treated animals presented better renal function with less acute tubular necrosis and reduced ROS and MPO production. Moreover, the treatment was associated with lower expression of TNF-alpha, PGE(2), PGES, and t-bet and upregulation of HO-1 and IL-10. This profile was mirrored in serum, where inhibition of COXs significantly decreased interferon (IFN)-gamma, TNF-alpha, and IL-12 p70 and upregulated IL-10. COXs seem to play an important role in renal ischemia and reperfusion injury, involving the secretion of pro-inflammatory cytokines, activation of neutrophils, and ROS production. Inhibition of COX pathway is intrinsically involved with cytoprotection.
Resumo:
Diabetic patients have increased susceptibility to infection, which may be related to impaired inflammatory response observed in experimental models of diabetes, and restored by insulin treatment. The goal of this study was to investigate whether insulin regulates transcription of cytokines and intercellular adhesion molecule 1 (ICAM-1) via nuclear factor-kappa B (NF-kappa B) signaling pathway in Escherichia coli LIPS-induced lung inflammation. Diabetic male Wistar rats (alloxan, 42 mg/kg, iv., 10 days) and controls were instilled intratracheally with saline containing LPS (750 mu g/0.4 mL) or saline only. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 2 h before LIPS. Analyses performed 6 h after LPS included: (a) lung and mesenteric lymph node IL-1 beta, TNF-alpha, IL-10, and ICAM-1 messenger RNA (mRNA) were quantified by real-time reverse transcriptase-polymerase chain reaction; (b) number of neutrophils in the bronchoalveolar lavage (BAL) fluid, and concentrations of IL-1 beta, TNF-alpha, and IL-10 in the BAL were determined by the enzyme-linked immunosorbent assay; and (c) activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were quantified by Western blot analysis. Relative to controls, diabetic rats exhibited a reduction in lung and mesenteric lymph node IL-1 beta (40%), TNF-alpha (similar to 30%), and IL-10 (similar to 40%) mRNA levels and reduced concentrations of IL-1 beta (52%), TNF-alpha (62%), IL-10 (43%), and neutrophil counts (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were almost suppressed in diabetic rats. Treatment of diabetic rats with insulin completely restored mRNA and protein levels of these cytokines and potentiated lung ICAM-1 mRNA levels (30%) and number of neutrophils (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were partially restored by insulin treatment. In conclusion, data presented suggest that insulin regulates transcription of proinflammatory (IL-1 beta, TNF-alpha) and anti-inflammatory (IL-10) cytokines, and expression of ICAM-1 via the NF-kappa B signaling pathway.
Resumo:
Background. Periodontal diseases (PDs) are infectious diseases in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction. Recently, viruses have been implicated in the pathogenesis of PDs. Individuals infected with human T lymphotropic virus 1 (HTLV-1) present with abnormal oral health and a marked increased prevalence of periodontal disease. Methods. In this study, we investigated the patterns of periodontopathogen infection and local inflammatory immune markers in HTLV-1-seropositive individuals with chronic periodontitis (CP/HTLV-1 group) compared with HTLV-1 -seronegative individuals with chronic periodontitis (CP group) and periodontally healthy, HTLV-1 -seronegative individuals (control group). Results. Patients in the CP/HTLV-1 group had significantly higher values of bleeding on probing, mean probing depth, and attachment loss than patients in the CP group. The expression of tumor necrosis factor a and interleukin (IL) 4 was found to be similar in the CP and CP/HTLV-1 groups, whereas IL-12 and IL-17 levels trended toward a higher expression in the CP/HTLV-1 group. A significant increase was seen in the levels of IL-1 beta and interferon gamma in the CP/HTLV-1 group compared with the CP group, whereas expression of the regulatory T cell marker FOXp3 and IL-10 was significantly decreased in the lesions from the CP/HTLV-1 group. Interestingly, similar frequency and/or load of periodontopathogens (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans) and frequency of viruses (herpes simplex virus 1, human cytomegalovirus, and Epstein-Barr virus) characteristically associated with PDs were found in the CP/HTLV and CP groups. Conclusions. HTLV-1 may play a critical role in the pathogenesis of periodontal disease through the deregulation of the local cytokine network, resulting in an exacerbated response against a standard periodontopathogen infection.
Resumo:
The ionic liquid (IL), 1-allyl-3-(1-butyl)imidazolium chloride (AlBuImCl), has been synthesized and its properties determined. Increase in the temperature increased its conductivity and decreased its density, polarity, and viscosity. Microcrystalline cellulose (MCC), dissolves in thisIL by heating at 80 degrees C; this did not affect its degree of polymerization, decreased its index of crystallinity (Ic), and changed in morphology after regeneration. Convenient acylation of MCC was achieved by using 50% excess anhydride at 80 degrees C, for 24 or 48 h for acetic and butyric anhydride, respectively. The composition of the mixed esters depended on the initial ratio of the anhydrides, and their order of addition.
Resumo:
The thermo-solvatochrornic behaviors of 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate, RB; 2,6-dichloro-4-(2,4,6-triphenyloyridinium-1-yl) phenolate, WB; 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr(2); 2,6-dibromo-4-[(E)-2-(1-n-octylpyridinium-4-yl)ethenyl] phenolate, OcPMBr(2), have been investigated in binary mixtures of the ionic liquid, IL, 1-(1-butyl)-3-methylimidazolium tetrafluorborate, [BuMeIm][BF(4)], and water (W), in the temperature range from 10 to 60 degrees C. Plots of the empirical solvent polarities, ET (probe) in kcal mol(-1), versus the mole fraction of water in the binary mixture, chi(w) showed nonlinear, i.e., nonideal behavior. Solvation by these IL-W mixtures shows the following similarities to that by aqueous aliphatic alcohols: The same solvation model can be conveniently employed to treat the data obtained; it is based on the presence in the system-bulk medium and probe solvation shell of IL, W, and the ""complex"" solvent 1:1 IL-W. The origin of the nonideal solvation behavior appears to be the same, preferential solvation of the probe, in particular by the complex solvent. The strength of association of the IL-W complex, and the polarity of the IL are situated between the corresponding values of aqueous methanol and aqueous ethanol. Temperature increase causes a gradual desolvation of all probes employed. A difference between solvation by IL-W and aqueous alcohols is that probe-solvent hydrophobic interactions appear to play a minor role in case of the former mixture, probably because solvation is dominated by hydrogen-bonding and Coulombic interactions between the ions of the IL and the zwitterionic probes.