33 resultados para INNATE IMMUNE-RESPONSE
Resumo:
Previous studies have reported that chronic supplementation with shark liver oil (SLO) improves immune response of lymphocyte, macrophage and neutrophil in animal models and humans. In a similar manner, exercise training also stimulates the immune system. However, we are not aware of any study about the association of exercise and SLO supplementation on immune response. Thus, our main goal was to investigate the effect of chronic supplementation with SLO on immune responses of exercise-trained rats. Male Wistar rats were divided into four groups: sedentary with no supplementation (SED, n = 20), sedentary with SLO supplementation (SEDslo, n = 20), exercised (EX, n = 17) and exercised supplemented with SLO (EXslo, n = 19). Rats swam for 6 weeks, 1.5 h/day, in water at 32 +/- A 1A degrees C, with a load of 6.0% body weight attached to the thorax of rat. Animals were killed 48 h after the last exercise session. SLO supplementation did not change phagocytosis, lysosomal volume, superoxide anion and hydrogen peroxide production by peritoneal macrophages and blood neutrophils. Thymus and spleen lymphocyte proliferation were significantly higher in SEDslo, EX, and EXslo groups compared with SED group (P < 0.05). Gut-associated lymphocyte proliferation, on the other hand, was similar between the four experimental groups. Our findings show that SLO and EX indeed are able to increase lymphocyte proliferation, but their association did not induce further stimulation in the adaptive immune response and also did not modify innate immunity.
Resumo:
Acute kidney injury (AKI) is an important clinical syndrome characterized by abnormalities in the hydroelectrolytic balance. Because of high rates of morbidity and mortality (from 15% to 60%) associated with AKI, the study of its pathophysiology is critical in searching for clinical targets and therapeutic strategies. Severe sepsis is the major cause of AKI. The host response to sepsis involves an inflammatory response, whereby the pathogen is initially sensed by innate immune receptors (pattern recognition receptors [PRRs]). When it persists, this immune response leads to secretion of proinflammatory products that induce organ dysfunction such as renal failure and consequently increased mortality. Moreover, the injured tissue releases molecules resulting from extracellular matrix degradation or dying cells that function as alarmines, which are recognized by PRR in the absence of pathogens in a second wave of injury. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are the best characterized PRRs. They are expressed in many cell types and throughout the nephron. Their activation leads to translocation of nuclear factors and synthesis of proinflammatory cytokines and chemokines. TLRs` signaling primes the cells for a robust inflammatory response dependent on NLRs; the interaction of TLRs and NLRs gives rise to the multiprotein complex known as the inflammasome, which in turn activates secretion of mature interleukin 1 beta and interleukin 18. Experimental data show that innate immune receptors, the inflammasome components, and proinflammatory cytokines play crucial roles not only in sepsis, but also in organ-induced dysfunction, especially in the kidneys. In this review, we discuss the significance of the innate immune receptors in the development of acute renal injury secondary to sepsis.
Resumo:
In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.
Resumo:
Respiratory syncytial virus (RSV) bronchiolitis is the leading cause of lower respiratory tract infection, and the most frequent reason for hospitalization among infants throughout the world. In addition to the acute consequences of the disease, RSV bronchiolitis in early childhood is related to further development of recurrent wheezing and asthma. Despite the medical and economic burden of the disease, therapeutic options are limited to supportive measures, and mechanical ventilation in severe cases. Growing evidence suggests an important role of changes in pulmonary surfactant content and composition in the pathogenesis of severe RSV bronchiolitis. Besides the well-known importance of pulmonary surfactant in maintenance of pulmonary homeostasis and lung mechanics, the surfactant proteins SP-A and SP-D are essential components of the pulmonary innate immune system. Deficiencies of such proteins, which develop in severe RSV bronchiolitis, may be related to impairment in viral clearance, and exacerbated inflammatory response. A comprehensive understanding of the role of the pulmonary surfactant in the pathogenesis of the disease may help the development of new treatment strategies. We conducted a review of the literature to analyze the evidences of pulmonary surfactant changes in the pathogenesis of severe RSV bronchiolitis, its relation to the inflammatory and immune response, and the possible role of pulmonary surfactant replacement in the treatment of the disease. Pediatr Pulmonol. 2011; 46:415-420. (c) 2010 Wiley-Liss, Inc.
Resumo:
Purpose: Exercise training restores innate immune system cell function in post-myocardial infarction (post-MI) rats. However, studies of the involvement of lymphocyte (Ly) in the setting of the congestive heart failure (CHF) are few. To address this issue, we investigated the function of Ly obtained from cervical lymph nodes from post-MI CHF rats submitted to treadmill running training. Methods: Twenty-five male Wistar rats were randomly assigned to the following groups: rats submitted to ligation of the left coronary artery, which were sedentary (MI-S, N= 7, only limited activity) or trained (MI-T, N= 6, on a treadmill (0% grade at 13-20 m.m(-1)) for 60 min.d(-1), 5 d.wk(-1), for 8-10 wk); or sham-operated rats, which were sedentary (sham-S, N = 6) or trained (sham-T, N = 6). The incorporation of [2-C-14]-thymidine by Ly cultivated in the presence of concanavalin A (Con A) and lipopolysaccharide (LPS), cytokine production by Ly cultivated in the presence of phytohemagglutinin (PHA), and plasma concentration of glutamine were assessed in all groups, 48 h after the last exercise session. Results: Proliferative capacity was increased, following incubation with Con-A in the MI groups, when compared with the sham counterparts. When incubated in the presence of PHA, MI-S produced more IL-4 (96%) than sham-S (P < 0.001). The training protocol induced a 2.2-fold increase in the production of interleukin-2 (P < 0.001) of the cells obtained from the cervical lymph nodes of MI-T, compared with MI-S. Conclusion: The moderate endurance training protocol caused an increase in IL-2 production, and a trend toward the reversion of the Th-1/Th-2 imbalance associated with IL-4 production increased in the post-MI CHF animal model.
Resumo:
The proteinase-activated receptor 2 (PAR(2)) is a putative therapeutic target for arthritis. We hypothesized that the early pro-inflammatory effects secondary to its activation in the temporomandibular joint (TMJ) are mediated by neurogenic mechanisms. Immunofluorescence analysis revealed a high degree of neurons expressing PAR(2) in retrogradely labeled trigeminal ganglion neurons. Furthermore, PAR(2) immunoreactivity was observed in the lining layer of the TMJ, co-localizing with the neuronal marker PGP9.5 and substance-P-containing peripheral sensory nerve fibers. The intra-articular injection of PAR(2) agonists into the TMJ triggered a dose-dependent increase in plasma extravasation, neutrophil influx, and induction of mechanical allodynia. The pharmacological blockade of natural killer 1 (NK(1)) receptors abolished PAR(2)-induced plasma extravasation and inhibited neutrophil influx and mechanical allodynia. We conclude that PAR(2) activation is proinflammatory in the TMJ, through a neurogenic mechanism involving NK(1) receptors. This suggests that PAR(2) is an important component of innate neuro-immune response in the rat TMJ.
Resumo:
Innate immune responses against microorganisms may be mediated by Toll-like receptors (TLRs). Intestinal ischemia-reperfusion (i-I/R) leads to the translocation of bacteria and/or bacterial products such as endotoxin, which activate TLRs leading to acute intestinal and lung injury and inflammation observed upon gut trauma. Here, we investigated the role of TLR activation by using mice deficient for the common TLR adaptor protein myeloid differentiation factor 88 (MyD88) on local and remote inflammation following intestinal ischemia. Balb/c and MyD88(-/-) mice were subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). Acute neutrophil recruitment into the intestinal wall and the lung was significantly diminished in MyD88(-/-) after i-I/R, which was confirmed microscopically. Diminished neutrophil recruitment was accompanied with reduced concentration of TNF-alpha and IL-1 beta level. Furthermore, diminished microvascular leak and bacteremia were associated with enhanced survival of MyD88(-/-) mice. However, neither TNF-alpha nor IL-1 beta neutralization prevented neutrophil recruitment into the lung but attenuated intestinal inflammation upon i-I/R. In conclusion, our data demonstrate that disruption of the TLR/MyD88 pathway in mice attenuates acute intestinal and lung injury, inflammation, and endothelial damage allowing enhanced survival.
Resumo:
Objective: We investigated the effect of intrauterine undernourishment on some features of asthma using a model of allergic lung inflammation in rats. The effects of age at which the rats were challenged (5 and 9 wk) were also evaluated. Methods: Intrauterine undernourished offspring were obtained from dams that were fed 50% of the nourished diet of counterparts and were immunized at 5 and 9 wk of age. They were tested for immunoglobulin E anti-ova titers (by passive cutaneous anaphylaxis), cell count in the bronchoal-veolar fluid, leukotriene concentration, airway reactivity, mucus production, and blood corticosterone and leptin concentrations 21 d, after immunologic challenge. Results: Intrauterine undernourishment significantly reduced the antigen-specific immunoglobulin E production, inflammatory cell infiltration into airways, mucus secretion, and production of leukotrienes B-4/C-4 in the lungs in both age groups compared with respective nourished rats. The increased reactivity to methacholine that follows antigen challenge was not affected by intrauterine undernourishment. Corticosterone levels increased with age in the undernourished rats` offspring, but not in the nourished rats` offspring. Undernourished offspring already presented high levels of corticosterone before inflammatory stimulus and were not modified by antigen challenge. Leptin levels increased with challenge in the nourished rats but not in the undernourished rats and could not be related to corticosterone levels in the. undernourished rats. Conclusion: Intrauterine undernourishment has a striking and age-dependent effect on the off spring, reducing lung allergic inflammation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
To study the role of TLR2 in a experimental model of chronic pulmonary infection, TLR2-deficient and wild-type mice were intratracheally infected with Paracoccidioides brasiliensis, a primary fungal pathogen. Compared with control, TLR2(-/-) mice developed a less severe pulmonary infection and decreased NO synthesis. Equivalent results were detected with in vitro-infected macrophages. Unexpectedly, despite the differences in fungal loads both mouse strains showed equivalent survival times and severe pulmonary inflammatory reactions. Studies on lung-infiltrating leukocytes of TLR2(-/-) mice demonstrated an increased presence of polymorphonuclear neutrophils that control fungal loads but were associated with diminished numbers of activated CD4(+) and CD8(+) T lymphocytes. TLR2 deficiency leads to minor differences in the levels of pulmonary type 1 and type 2 cytokines, but results in increased production of KC, a CXC chemokine involved in neutrophils chemotaxis, as well as TGF-beta, IL-6, IL-23, and IL-17 skewing T cell immunity to a Th17 pattern. In addition, the preferential Th17 immunity of TLR2(-/-) mice was associated with impaired expansion of regulatory CD4(+)CD25(+)FoxP3(+) T cells. This is the first study to show that TLR2 activation controls innate and adaptive immunity to P. brasiliensis infection. TLR2 deficiency results in increased Th17 immunity associated with diminished expansion of regulatory T cells and increased lung pathology due to unrestrained inflammatory reactions. The Journal of Immunology, 2009, 183: 1279-1290.
Resumo:
Background: Hepatocyte growth factor (HGF) is overexpressed after acute kidney injury (AKI). The aim of this study was to evaluate the role of endogenous HGF in the progression of the inflammatory response in glycerol-induced AKI (Gly-AKI) in rats. Methods: Renal and systemic HGF expressions were evaluated during the development of Gly-AKI. Subsequently, the blockade of endogenous HGF was analyzed in rats treated with anti-HGF antibody concomitant to glycerol injection. Apoptosis, cell infiltration and chemokine and cytokine profiles were investigated. Results: We detected an early peak of renal and plasma HGF protein expressions 3 h after glycerol injection. The pharmacological blockade of the endogenous HGF exacerbated the renal impairment, the tubular apoptosis, the renal expression of monocyte chemoattractant protein-1 and the macrophage, CD43+, CD4+ and CD8+ T lymphocytes renal infiltration. The analysis of mRNA expressions of Th1 (t-bet, TNF-alpha, IL-1 beta) and Th2 (gata-3, IL-4, IL-10) cytokines showed a Th1-polarized response in Gly-AKI rats that was aggravated with the anti-HGF treatment. Conclusion: Endogenous HGF attenuates the renal inflammatory response, leukocyte infiltration and Th1 polarization after glycerol injection. The control of cellular immune response may partly explain the protective effect of endogenous HGF in the development of Gly-AKI. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.
Resumo:
The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19 kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FIiC), a Toll-like receptor 5 (TLR5) agonist. FHC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by Sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P vivax MSPI 19 in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1 (19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSPI 19-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malaria antigens and the innate immunity agonist FliC. it contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Bovine Viral Diarrhea Virus (BVDV) is widespread in cattle in Brazil and research shows its large antigenic variability. Available vaccines are produced with virus strains isolated in other countries and may not be effective. In this study, inactivated vaccines containing the Brazilian BVDV-Ib IBSP11 isolate were developed and tested on 6 groups of 10 guinea pigs (Cavia porcellus). Animals in groups A and C received an aqueous vaccine (aluminum hydroxide); B and D groups received an oily vaccine (Montanide ISA50); Group E positive-control animals were given an imported commercial vaccine with BVDV-la Singer; Group F animals were sham vaccinated (negative control). Groups A, B and E received two doses, and Groups C and D, three, every 21 days. Twelve blood samples were taken, at 21-day intervals over 231 days, and evaluated for antibody titer through virus-neutralization (VN), using a homologous strain (IBSP11), and a heterologous strain (BVDV-la NADL). Most animals, 42 days following the first dose, seroconverted to both strains and, after the second dose, there was a significant increase of titers in all groups. The oily formulation induced greater response after the third administration. This increase was not observed with the aqueous vaccines, regardless of the virus used in the VN. Antibody decline was more rapid in animals that received aqueous vaccines. The results showed the importance of studying the influence of endemic strains of commercial vaccines, to improve the efficacy of BVD vaccination. Use of the endemic strain in vaccine formulation presented promising results, as well as the use of guinea pigs as a laboratory model. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Paracoccidioidomycosis (PCM) is a systemic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis. Anti-PCM vaccine formulations based on the secreted fungal cell wall protein (gp43) or the derived P10 sequence containing a CD4(+) T-cell-specific epitope have shown promising results. In the present study, we evaluated new anti-PCM vaccine formulations based on the intranasal administration of P. brasiliensis gp43 or the P10 peptide in combination with the Salmonella enterica FliC flagellin, an innate immunity agonist binding specifically to the Toll-like receptor 5, in a murine model. BALB/c mice immunized with gp43 developed high-specific-serum immunoglobulin G1 responses and enhanced interleukin-4 (IL-4) and IL-10 levels. On the other hand, mice immunized with recombinant purified flagellins genetically fused with P10 at the central hypervariable domain, either flanked or not by two lysine residues, or the synthetic P10 peptide admixed with purified FliC elicited a prevailing Th1-type immune response based on lung cell-secreted type 1 cytokines. Mice immunized with gp43 and FliC and intratracheally challenged with P. brasiliensis yeast cells had increased fungal proliferation and lung tissue damage. In contrast, mice immunized with the chimeric flagellins and particularly those immunized with P10 admixed with FliC reduced P. brasiliensis growth and lung damage. Altogether, these results indicate that S. enterica FliC flagellin modulates the immune response to P. brasiliensis P10 antigen and represents a promising alternative for the generation of anti-PCM vaccines.