27 resultados para INFRARED SPECTROELECTROCHEMISTRY
Resumo:
Silicate mineral hemimorphite has been investigated concerning its TL, IR and EPR properties. A broad TL peak around 180 degrees C and a weaker and narrower peak around 360 degrees C were found in a sample annealed at 600 degrees C for I h and then irradiated. The deconvolution using the CGCD method revealed peaks around 132, 169, 222 and 367 degrees C. The reflectivity measurements showed several bands in the NIR region due to H(2)O, OH and Al-OH complexes. No band was observed in the visible region. The thermal treatments were carried out from similar to 110 to 940 degrees C and dehydration was observed, first causing a diminishing optical absorption in general and the disappearance of water and hydroxyl absorption bands. The EPR spectrum of natural hemimorphite, presented Cu(2+) signals at g = 2.4 and g = 2.1 plus E(1)` signal superposed to Fe(3+) signal around g = 2.0. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Phototherapy improves cellular activation which is an important factor for the treatment of cellulite. The objective of this research was to develop and evaluate the effects of a new (noninvasive and nonpharmacological) clinical procedure to improve body aesthetics: infrared-LED (850 nm) plus treadmill training. Twenty women (25-55 years old) participated in this study. They were separated in two groups: the control group, which carried out only the treadmill training (n = 10), and the LED group, with phototherapy during the treadmill training (n - 10). The training was performed for 45 minutes twice a week over 3 months at intensities between 85% and 90% maximal heart rate (HR(max)). The irradiation parameters were 39 mW/cm(2) and a fluence of 106 J/cm(2). The treatment was evaluated by interpreting body composition parameters, photographs and thermography. This was primarily a treatment for cellulite with a reduction of saddlebag and thigh circumference. At the same time, the treadmill training prevented an increase of body fat, as well as the loss of lean mass. Moreover, thermal images of the temperature modification of the thighs are presented. These positive effects can result in a further improvement of body aesthetics using infrared-LED together with treadmill training.
Resumo:
The purpose of the present work is to report studies on structural phase transition for PMN-xPT ferroelectric, with melt PbTiO3 composition around the MPB (x = 0.35 mol %), using infrared spectroscopy technique. The study was centered on monitoring the behavior of the 1-(NbO), 1-(TiO) and 1-(MgO) stretching modes as a function of temperature. The increasing as a function of temperature for 1-(TiO) and 1-(MgO) modes, observed between 230 and 300 K, can be related to the monoclinic (MC) + tetragonal (T) phase coexistence in the PMN-PT.
Resumo:
CaNb(2)O(6) single crystal fibers were grown by the laser-heated pedestal growth technique, directly from the starting reagents. Optically transparent fibers were obtained in the form of rods with elliptical cross-section, free from cracks, impurities, and secondary phases, with an average diameter of 0.4 mm and about 20 mm of length. The fibers grew within the orthorhombic Pbcn columbite structure, with the growth axis nearly parallel to the crystallographic a-direction. The parameters b and c were parallel to the shorter and larger ellipsis axes. A special setup using a microscope was developed to obtain the far-infrared reflectivity spectra of these micrometer-sized fibers, allowing the identification and assignment of 34 of the 38 polar phonons foreseen for the material. From these phonons, the intrinsic dielectric constant ( of 185 THz) could be estimated, showing the potential of the material for applications in microwave circuitry. These results, along with previous polarized Raman data (Cryst. Growth Des. 2010, 10, 1569), allow us to present a comprehensive set of optical phonon modes and to discuss the potential use of designed CaNb(2)O(6) microcrystals in compact optical devices.
Resumo:
Energy transfer processes were studied in two sets of Yb3+ and Tm3+ co-doped sodium-metaphosphate glasses, prepared in air and nitrogen atmospheres. Using Forster, Dexter, and Miyakawa theoretical models, the energy transfer parameters were calculated. The main ion-ion energy transfer processes analyzed were energy migration among Yb3+ ions, cross-relaxations between Yb3+ and Tm3+ ions, and interactions with OH- radicals. The results indicated that Yb -> Tm energy transfer favors 1.8 mu m emissions, and there is no evidence of concentration quenching up to 2% Tm2O3 doping. As expected, samples prepared in nitrogen atmosphere present higher fluorescence quantum efficiency than those prepared in air, and this feature is specially noted in the near-infrared region, where the interaction with the OH- radicals is more pronounced. (c) 2007 Published by Elsevier B.V.
Resumo:
The need of efficient (fast and low consumption) optoelectronic devices has always been the driving force behind the investigation of materials with new or improved properties. To be commercially attractive, however, these materials should be compatible with our current micro-electronics industry and/or telecommunications system. Silicon-based compounds, with their matured processing technology and natural abundance, partially comply with such requirements-as long as they emit light. Motivated by these issues, this work reports on the optical properties of amorphous Si films doped with Fe. The films were prepared by sputtering a Si+Fe target and were investigated by different spectroscopic techniques. According to the experimental results, both the Fe concentration and the thermal annealing of the samples induce changes in their atomic structure and optical-electronic properties. In fact, after thermal annealing at similar to 750 degrees C, the samples partially crystallize with the development of Si and/or beta-FeSi(2) crystallites. In such a case, certain samples present light emission at similar to 1500 nm that depends on the presence of beta-FeSi(2) crystallites and is very sensitive to the annealing conditions. The most likely reasons for the light emission (or absence of it) in the considered Fe-doped Si samples are presented and discussed in view of their main structural-electronic characteristics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Synthesis, infrared spectroscopy and crystal structure of a new potassium decavanadate decahydrate, K(6)[V(10)O(28)] 10H(2)O, has been reported The infrared spectrum is dominated by decavanadate polyanion and water bands The X-ray crystallography analysis found the compound crystallizes in a triclinic system with the parameters a = 10 5334 (4) angstrom, b = 10 6600 (4) angstrom, c = 17 7351 (5) angstrom, alpha = 76 940 (2)degrees, beta = 75 836 (2)degrees, gamma = 64 776 (2)degrees, V = 1,729 86 (11) A(3), Z = 2, space group P (1) over bar The polyanion consists of ten [VO(6)] octahedra sharing edges, in which the V-O distances are in good agreement with those reported for other decavanadates The crystal structure is stabilized by potassium cations and water molecules forming a complex pattern of hydrogen bonding and short contact ionic interactions
Resumo:
Carbon dioxide electroreduction on copper electrode was studied by surface enhanced Raman scattering (SERS) in K(2)SO(4) aqueous solutions with different pH values. CO(2) was bubbled into the solution at 0 V vs. Ag/AgCl, i.e., on an oxidized copper surface. In acidic solutions (pH around 2.5), at -0.2 V, bands indicative of the presence of ethylene on the electrode surface were detected. Although ethylene is knowledgably a product of CO(2) electroreduction on copper, it was not experimentally identified on the electrode`s surface at such a low cathodic potential in prior works. In solutions with pH around 2.5, CO bands were not observed, suggesting that hydrocarbons could be formed by a pathway that does not occur via adsorbed CO. In solutions with higher pHs, a complex spectral pattern, between 800 and 1700 cm(-1), was observed at approximately -0.4 V. The observed spectrum closely resembles those reported in the literature for adsorption of monocarboxylic acids with small chains. The spectral features indicate the presence of a structure containing a double C=C bond. a carboxyl group, and C-H bonds on the electrode`s surface. SERS spectra obtained in CO-saturated solution are also presented. However, in this case, no SERS bands were observed in the region between 800 and 1700 cm(-1) at low cathodic potentials. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Neodymium based fluorescence presents several advantages in comparison to conventional rare earth or enzyme-substrate based fluorescence emitting sources (e.g.Tb, HRP). Based on this fact we have herein explored a Nd-based fluoroimmunoassay. We efficiently detected the presence of an oxidized low-density lipoprotein (oxLDL) in human plasma a well-known marker for cardiovascular diseases, which causes around 30% of deaths worldwide. Conventional fluoroimmunoassay uses time-resolved luminescence techniques, with detection in the visible range, to eliminate the fluorescence background from the biological specimens. By using an immunoassay based on functionalized Y(2)O(3):Nd(3+) nanoparticles, where the excitation and emission processes in the Nd(3+) ion occur in the near-infrared (NIR) region, we have succeeded in eliminating the interferences from the biological fluorescence background, avoiding the use of time-resolved techniques. This yields higher emission intensity from the Nd(3+)-nanolabels and efficient detection of anti-oxidized low-density lipoproteins (anti-oxLDL) by Y(2)O(3):Nd(3+)-antibody-antigen conjugation, leading to a novel biolabeling method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Although Pt has been thoroughly studied regarding its activity for the borohydride oxidation reaction (BOR), the BOR mechanism at Pt remains unclear: Depending on the applied potential, spontaneous BH(4)(-) hydrolysis can compete with the direct BOR. The goal of the present work is to provide more insight into the behavior of smooth Pt electrodes toward the BOR, by coupling in situ infrared reflectance spectroscopy with electrochemistry. The measurements were performed on a Pt electrode in 1 M NaOH/1 M NaBH(4), so as to detect the reaction intermediate species generated as a function of the applied potential. Several bands were monitored in the B-H ((v) over bar approximate to 1180, 1080, and 972 cm(-1)) and B-O ((v) over bar = 1325 and similar to 1425 cm(-1)) bond regions upon increased electrode polarization. These absorption bands, which appear sequentially and were already detected for similar measurements on Au electrodes, are assigned to BH(3), BH(2), and BO(2)(-) species. In light of these experimental data and previous results obtained in our group for Pt- or Au-based electrodes, possible initial elementary steps of the BOR on platinum electrodes are proposed and discussed according to the relevant literature data.
Resumo:
The time dependence of the concentration of CO2 in an electrochemical thin layer cavity is studied with Fourier transform infrared spectroscopy (FTIR) in order to evaluate the extent to which the thin layer cavity is diffusionally decoupled from the surrounding bulk electrolyte. For the model system of CO on Pt(111) in 0.1 M HClO4, it is found that the concentration of CO2, formed by electro-oxidation of CO, equilibrates rapidly with the surrounding bulk electrolyte. This rapid equilibration indicates that there is diffusion out of the thin layer, even on the short time scales of typical infrared experiments (1-3 min). However, since the measured CO2 absorbance intensity as a function of time is reproducible to within 10%, a new time-dependent method for surface coverage calibration using solution-phase species is proposed.
Resumo:
The oscillatory electro-oxidation of methanol was studied by means of in situ infrared (IR) spectroscopy in the attenuated total reflection (ATR) configuration using a platinum film on a Si prism as working electrode. The surface-enhanced infrared absorption (SEIRA) effect considerably improves the spectroscopic resolution, allowing at following the coverage of some adsorbing species during the galvanostatic oscillations. Carbon monoxide was the main adsorbed specie observed in the induction period and within the oscillatory regime. The system was investigated at two distinct time-scales and its dynamics characterized accordingly. During the induction period the main transformation observed as the system move through the phase space towards the oscillatory region was the decrease of the coverage of adsorbed carbon, coupled to the increase of the electrode potential. Similar transition characterizes the evolution within the oscillatory region, but at a considerably slower rate. Experiments with higher time resolution revealed that the electrode potential oscillates in-phase with the frequency of the linearly adsorbed CO vibration and that the amount of adsorbed CO oscillates with small amplitude. Adsorbed formate was found to play, if any, a very small role. Results are discussed and compared with other systems. (C) 2010 Elsevier B.V. All rights reserved.