158 resultados para Hypertensive Rats
Resumo:
Disturbances in the regulation of cytosolic calcium (Ca(2+)) concentration play a key role in the vascular dysfunction associated with arterial hypertension. Stromal interaction molecules (STIMs) and Orai proteins represent a novel mechanism to control store-operated Ca(2+) entry. Although STIMs act as Ca(2+) sensors for the intracellular Ca(2+) stores, Orai is the putative pore-forming component of Ca(2+) release-activated Ca(2+) channels at the plasma membrane. We hypothesized that augmented activation of Ca(2+) release-activated Ca(2+)/Orai-1, through enhanced activity of STIM-1, plays a role in increased basal tonus and vascular reactivity in hypertensive animals. Endothelium-denuded aortic rings from Wistar-Kyoto and stroke-prone spontaneously hypertensive rats were used to evaluate contractions because of Ca(2+) influx. Depletion of intracellular Ca(2+) stores, which induces Ca(2+) release-activated Ca(2+) activation, was performed by placing arteries in Ca(2+) free-EGTA buffer. The addition of the Ca(2+) regular buffer produced greater contractions in aortas from stroke-prone spontaneously hypertensive rats versus Wistar-Kyoto rats. Thapsigargin (10 mu mol/L), an inhibitor of the sarcoplasmic reticulum Ca(2+) ATPase, further increased these contractions, especially in stroke-prone spontaneously hypertensive rat aorta. Addition of the Ca(2+) release-activated Ca(2+) channel inhibitors 2-aminoethoxydiphenyl borate (100 mu mol/L) or gadolinium (100 mu mol/L), as well as neutralizing antibodies to STIM-1 or Orai-1, abolished thapsigargin-increased contraction and the differences in spontaneous tone between the groups. Expression of Orai-1 and STIM-1 proteins was increased in aorta from stroke-prone spontaneously hypertensive rats when compared with Wistar-Kyoto rats. These results support the hypothesis that both Orai-1 and STIM-1 contribute to abnormal vascular function in hypertension. Augmented activation of STIM-1/Orai-1 may represent the mechanism that leads to impaired control of intracellular Ca(2+) levels in hypertension. (Hypertension. 2009; 53[part 2]: 409-416.)
Resumo:
Recent evidence suggests that angiotensin II (Ang II) upregulates phosphodiesterase (PDE) 1A expression. We hypothesized that Ang II augmented PDE1 activation, decreasing the bioavailability of cyclic guanosine 3` 5`-monophosphate (cGMP), and contributing to increased vascular contractility. Male Sprague-Dawley rats received mini-osmotic pumps with Ang II (60 ng.min(-1)) or saline for 14 days. Phenylephrine (PE)-induced contractions were increased in aorta (E(max)168%+/- 8% vs 136%+/- 4%) and small mesenteric arteries (SMA; E(max)170%+/- 6% vs 143%+/- 3%) from Ang II-infused rats compared to control. PDE1 inhibition with vinpocetine (10 mu mol/L) reduced PE-induced contraction in aortas from Ang II rats (E(max)94%+/- 12%) but not in controls (154%+/- 7%). Vinpocetine decreased the sensitivity to PE in SMA from Ang II rats compared to vehicle (-log of half maximal effective concentration 5.1 +/- 0.1 vs 5.9 +/- 0.06), but not in controls (6.0 +/- 0.03 vs 6.1 +/- 0.04). Sildenafil (10 mu mol/L), a PDE5 inhibitor, reduced PE-induced maximal contraction similarly in Ang II and control rats. Arteries were contracted with PE (1 mu mol/L), and concentration-dependent relaxation to vinpocetine and sildenafil was evaluated. Aortas from Ang II rats displayed increased relaxation to vinpocetine compared to control (E(max)82%+/- 12% vs 445 +/- 5%). SMA from Ang II rats showed greater sensitivity during vinpocetine-induced relaxation compared to control (-log of half maximal effective concentration 6.1 +/- 0.3 vs 5.3 +/- 0.1). No differences in sildenafil-induced relaxation were observed. PDE1A and PDE1C expressions in aorta and PDE1A expression in SMA were increased in Ang II rats. cGMP production, which is decreased in arteries from Ang II rats, was restored after PDE1 blockade. We conclude that PDE1 activation reduces cGMP bioavailability in arteries from Ang II, contributing to increased contractile responsiveness. (Hypertension. 2011;57[part 2]:655-663.)
Resumo:
Objectives The present study aimed to assess the effect of the specific dipeptidyl peptidase IV (DPPIV) inhibitor sitagliptin on blood pressure and renal function in young prehypertensive (5-week-old) and adult spontaneously hypertensive rats (SHRs; 14-week-old). Methods Sitagliptin (40 mg/kg twice daily) was given by oral gavage to young (Y-SHR + IDPPIV) and adult (A-SHR R IDPPIV) SHRs for 8 days. Kidney function was assessed daily and compared with age-matched vehicle-treated SHR (Y-SHR and A-SHR) and with normotensive Wistar-Kyoto rats (Y-WKY and A-WKY). Arterial blood pressure was measured in these animals at the end of the experimental protocol. Additionally, Na(+)/H(+) exchanger isoform 3 (NHE3) function and expression in microvilli membrane vesicles were assessed in young animals. Results Mean arterial blood pressure of Y-SHR + IDPPIV was significantly lower than that of Y-SHR (104 +/- 3 vs. 123 +/- 5 mmHg, P < 0.01) and was similar to Y-WKY (94 +/- 4 mmHg, P > 0.05). Compared to Y-SHR, Y-SHR + IDPPIV exhibited enhanced cumulative urinary flow and sodium excretion and decreased NHE3 activity and expression in proximal tubule microvilli. In the A-SHR, sitagliptin treatment had no significant effect on either renal function or arterial blood pressure. Conclusion Our data suggest that DPPIV inhibition attenuates blood pressure rising in young prehypertensive SHRs, partially by inhibiting NHE3 activity in renal proximal tubule. J Hypertens 29:520-528 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
The P2Y(12) receptor antagonist clopidogrel blocks platelet aggregation, improves systemic endothelial nitric oxide bioavailability and has anti-inflammatory effects. Since P2Y(12) receptors have been identified in the vasculature, we hypothesized that clopidogrel ameliorates Angll (angiotensin II)-induced vascular functional changes by blockade of P2Y(12) receptors in the vasculature. Male Sprague Dawley rats were infused with Angll (60 ng/min) or vehicle for 14 days. The animals were treated with clopidogrel (10 mg . kg(-1) of body weight . day(-1)) or vehicle. Vascular reactivity was evaluated in second-order mesenteric arteries. Clopidogrel treatment did not change systolic blood pressure [(mmHg) control-vehicle, 117 +/- 7.1 versus control-clopidogrel, 125 +/- 4.2; Angll vehicle, 197 +/- 10.7 versus Angll clopidogrel, 198 +/- 5.2], but it normalized increased phenylephrine-induced vascular contractions [(%KCI) vehicle-treated, 182.2 +/- 18% versus clopidogrel, 133 +/- 14%), as well as impaired vasodilation to acetylcholine [(%) vehicle-treated, 71.7 +/- 2.2 versus clopidogrel, 85.3 +/- 2.8) in Angll-treated animals. Vascular expression of P2Y(12) receptor was determined by Western blot. Pharmacological characterization of vascular P2Y(12) was performed with the P2Y(12) agonist 2-MeS-ADP [2-(methylthio) adenosine 5`-trihydrogen diphosphate trisodium]. Although 2-MeS-ADP induced endothelium-dependent relaxation [(Emax %) = 71 +/- 12%) as well as contractile vascular responses (Emax % = 83 +/- 12%), these actions are not mediated by P2Y(12) receptor activation. 2-MeS-ADP produced similar vascular responses in control and Angll rats. These results indicate potential effects of clopidogrel, such as improvement of hypertension-related vascular functional changes that are not associated with direct actions of clopidogrel in the vasculature, supporting the concept that activated platelets contribute to endothelial dysfunction, possibly via impaired nitric oxide bioavailability.
Resumo:
Adenosine Is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A, receptors (A(1R)) on alpha(2)-adrenoceptors (Adr(2R)) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (B(max), K(d)) In the presence of 3 different concentrations of N(6)-cyclopentyladenosine (CPA), an A(1R) agonist. Neuronal culture confirmed our radioautographic results. [(3)H]RX821002, an Adr(2R) antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in B(max) values (21%) Induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by I nmol/L (increased B(max), 17%; decreased K(d), 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an Increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an AIR antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A(1R) that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important In understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension. (Hypertens Res 2008; 31: 2177-2186)
Resumo:
In addition to reducing blood pressure, hydralazine can reduce the production of inflammatory cytokines and reduce the expression of leukocyte adhesion molecules. Differences in leukocyte behavior and leukocyte adhesion molecule expression in spontaneously hypertensive rats (SHR) compared to normotensive rats have been reported. However, whether hydralazine can reduce leukocyte migration in vivo in hypertension and in normotension remains unknown. To address this question, male SHR and Wistar rats were treated for 15 days with hydralazine at a dose of similar to 3.5 mg/kg or similar to 14 mg/kg in their drinking water. The numbers of rollers and adherent and migrated cells were determined by direct vital microscopy, and blood pressure was assessed by tail plethysmography. In addition, following treatment with the higher dose, immunohistochemistry was used to measure the expression of intercellular adhesion molecule-1 (ICAM-1), P-selectin, and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cells, while flow cytometry was used to evaluate the expression of leukocyte CD18 and L-selectin. Hydralazine reduced leukocyte adherence and migration in SHR either at the higher, that reduced blood pressure levels, or lower dose, which did not reduce it. Reduced ICAM-1 expression might be involved in the reduced migration observed in SHR. In Wistar rats, only at the higher dose hydralazine reduced blood pressure levels and leukocyte migration. Reduced P-selectin expression might be involved. We therefore conclude that hydralazine reduces leukocyte migration by different mechanisms in SHR and Wistar rats, specifically by reducing ICAM-1 expression in the former and P-selectin expression in the latter. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Centrally injected histamine (HA) affects heart rate (HR), arterial blood pressure (BP), and sympathetic activity in rats. The posterodorsal medial amygdala (MePD) has high levels of histidine decarboxylase, connections with brain areas involved with the modulation of cardiovascular responses, and is relevant for the pathogenesis of hypertension. However, there is no report demonstrating the role of the MePD histaminergic activity on the cardiovascular function in awake rats. The alms of the present work were: 1) to study the effects of two doses (10-100 nM) of HA microinjected in the MePD on basal cardiovascular recordings and on baroreflex- and chemoreflex-mediated responses; 2) to reveal whether cardiovascular reflex responses could be affected by MePD microinjections of (R)-alpha-methylhistamine (AH(3)), an agonist of the inhibitory autoreceptor H(3); and, 3) to carry out a power spectral analysis to evaluate the contribution of the sympathetic and parasympathetic components in the variability of the HR and BP recordings. When compared with the control group (microinjected with saline, 0.3 mu l), HA (10 nM) promoted an increase in the MAP(50), i.e. the mean value of BP at half of the HR range evoked by the baroreflex response. Histamine (100 nM) did not affect the baroreflex activity, but significantly decreased the parasympathetic component of the HR variability, increased the sympathetic/parasympathetic balance at basal conditions (these two latter evaluated by the power spectral analysis), and promoted an impairment in the chemoreflex bradycardic response. Microinjection of AH(3) (10 mu M) led to mixed results, which resembled the effects of both doses of HA employed here. Present data suggest that cardiovascular changes induced by baroreceptors and chemoreceptors involve the histaminergic activity in the MePD. This neural regulation of reflex cardiovascular responses can have important implications for homeostatic and allostatic conditions and possibly for the behavioral displays modulated by the rat MePD. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Adenosine acts in the nucleus tractus solitarii (NTS), one of the main brain sites related to cardiovascular control. In the present study we show that A(1) adenosine receptor (A(1R)) activation promotes an increase on alpha(2)-adrenoceptor (Alpha(2R)) binding in brainstem cell culture from newborn rats. We investigated the intracellular cascade involved in such modulatory process using different intracellular signaling molecule inhibitors as well as calcium chelators. Phospholipase C, protein kinase Ca(2+)-dependent, IP(3) receptor and intracellular calcium were shown to participate in A(1R)/Alpha(2R) interaction. In conclusion, this result might be important to understand the role of adenosine within the NTS regarding autonomic cardiovascular control. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aims: To investigate the effect of N omega-Nitro-L-arginine methyl ester CL-NAME) treatment, known to induce a sustained elevation of blood pressure, on ectonucleotidase activities in kidney membranes of rats. Main methods: L-NAME (30 mg/kg/day) was administered to Wistar rats for 14 days in the drinking water. Enzyme activities were determined colorimetrically and their gene expression patterns were analyzed by semi-quantitative RT-PCR. The metabolism of ATP and the accumulation of adenosine were evaluated by HPLC in kidney membranes from control and hypertensive rats. PKC phosphorylation state was investigated by Western blot. Key findings: We observed an increase in systolic blood pressure from 115 +/- 12 mmHg (control group) to 152 18 mmHg (L-NAME-treated group). Furthermore, the hydrolysis of ATP, ADP, AMP, and p-Nph-5`TMP was also increased (17%, 35%, 27%, 20%, respectively) as was the gene expression of NTPDase2, NTPDase3 and NPP3 in kidneys of hypertensive animals. Phospho-PKC was increased in hypertensive rats. Significance: The general increase in ATP hydrolysis and in ecto-5`-nucleotidase activity suggests a rise in renal adenosine levels and in renal autoregulatory responses in order to protect the kidney against the threat presented by hypertension. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Cardiovascular disease is less frequent in premenopausal women than in age-matched men or postmenopausal women. Moreover, the marked age-related decline in serum dehydroepiandrosterone (DHEA) level has been associated to cardiovascular disease. The aim of this study was to evaluate the effects of DHEA treatment on vascular function in ovariectomized rats. At 8 weeks of age, female Wistar rats were ovariectomized (OVX) or sham (SHAM) operated and 8 weeks after surgery both groups were treated with vehicle or DHEA (10 mg kg-1 week-1) for 3 weeks. Aortic rings were used to evaluate the vasoconstrictor response to phenylephrine (PHE) and the relaxation responses to acetylcholine (ACh) and sodium nitroprusside (SNP). Tissue reactive oxygen species (ROS) production and SOD, NADPH oxidase and eNOS protein expression were analysed. PHE-induced contraction was increased in aortic rings from OVX compared to SHAM, associated with a reduction in NO bioavailability. Furthermore, the relaxation induced by ACh was reduced in arteries from OVX, while SNP relaxation did not change. The incubation of aortic rings with SOD or apocynin restored the enhanced PHE-contraction and the impaired ACh-relaxation only in OVX. DHEA treatment corrected the increased PHE contraction and the impaired ACh-induced relaxation observed in OVX by an increment in NO bioavailability and decrease in ROS production. Besides, DHEA treatment restores the reduced Cu/Zn-SOD protein expression and eNOS phosphorylation and the increased NADPH oxidase protein expression in the aorta of OVX rats. The present results suggest an important action of DHEA, improving endothelial function in OVX rats by acting as an antioxidant and enhancing the NO bioavailability.
Resumo:
Background and aim: given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. Methods and results: Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. Conclusion: Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Oxytocinergic brainstem projections participate in the autonomic control of the circulation. We investigated the effects of hypertension and training on cardiovascular parameters after oxytocin (OT) receptor blockade within the nucleus tractus solitarii (NTS) and NTS OT and OT receptor expression. Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were trained (55% of maximal exercise capacity) or kept sedentary for 3 months and chronically instrumented (NTS and arterial cannulae). Mean arterial blood pressure (MAP) and heart rate (HR) were measured at rest and during an acute bout of exercise after NTS pretreatment with vehicle or OT antagonist (20 pmol of OT antagonist (200 nl of vehicle)-1). Oxytocin and OT receptor were quantified (35S-oligonucleotide probes, in situ hybridization) in other groups of rats. The SHR exhibited high MAP and HR (P < 0.05). Exercise training improved treadmill performance and reduced basal HR (on average -11%) in both groups, but did not change basal MAP. Blockade of NTS OT receptor increased exercise tachycardia only in trained groups, with a larger effect on trained WKY rats (+31 +/- 9 versus +12 +/- 3 beats min-1 in the trained SHR). Hypertension specifically reduced NTS OT receptor mRNA density (-46% versus sedentary WKY rats, P < 0.05); training did not change OT receptor density, but significantly increased OT mRNA expression (+2.5-fold in trained WKY rats and +15% in trained SHR). Concurrent hypertension- and training-induced plastic (peptide/receptor changes) and functional adjustments (HR changes) of oxytocinergic control support both the elevated basal HR in the SHR group and the slowing of the heart rate (rest and exercise) observed in trained WKY rats and SHR.
Resumo:
Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.
Resumo:
We evaluated the development of arterial hypertension, cardiac function, and collagen deposition, as well as the level of components of the renin-angiotensin system in the heart of transgenic rats that overexpress an angiotensin (Ang)-(1-7)-producing fusion protein, TGR(A1-7)3292 (TG), which induces a lifetime increase in circulating levels of this peptide. After 30 days of the induction of the deoxycorticosterone acetate (DOCA)-salt hypertension model, DOCA-TG rats were hypertensive but presented a lower systolic arterial pressure in comparison with DOCA-Sprague-Dawley (SD) rats. In contrast to DOCA-SD rats that presented left ventricle (LV) hypertrophy and diastolic dysfunction, DOCA-TG rats did not develop cardiac hypertrophy or changes in ventricular function. In addition, DOCA-TG rats showed attenuation in mRNA expression for collagen type I and III compared with the increased levels of DOCA-SD rats. Ang II plasma and LV levels were reduced in SD and TG hypertensive rats in comparison with normotensive animals. DOCA-TG rats presented a reduction in plasma Ang-(1-7) levels; however, there was a great increase in Ang-(1-7) (approximate to 3-fold) accompanied by a decrease in mRNA expression of both angiotensin-converting enzyme and angiotensin-converting enzyme 2 in the LV. The mRNA expression of Mas and Ang II type 1 receptors in the LV was not significantly changed in DOCA-SD or DOCA-TG rats. This study showed that TG rats with increased circulating levels of Ang-(1-7) are protected against cardiac dysfunction and fibrosis and also present an attenuated increase in blood pressure after DOCA-salt hypertension. In addition, DOCA-TG rats showed an important local increase in Ang-(1-7) levels in the LV, which might have contributed to the attenuation of cardiac dysfunction and prefibrotic lesions. (Hypertension. 2010;55:889-896.)
Resumo:
P>1. Impairmant of baroreflex sensitivity (BRS) has been implicated in the reduction of heart rate variability (HRV) and in the increased risk of death after myocardial infarction (MI). In the present study, we investigated whether the additional impairment in BRS induced by sinoaortic baroreceptor denervation (SAD) in MI rats is associated with changes in the low-frequency (LF) component of HRV and increased mortality rate. 2. Rats were randomly divided into four groups: control, MI, denervated (SAD) and SAD + MI rats. Left ventricular (LV) function was evaluated by echocardiography. Autonomic components were assessed by power spectral analysis and BRS. 3. Myocardial infarction (90 days) reduced ejection fraction (by similar to 42%) in both the MI and SAD + MI groups; however, an increase in LV mass and diastolic dysfunction were observed only in the SAD + MI group. Furthermore, BRS, HRV and the LF power of HRV were reduced after MI, with an exacerbated reduction seen in SAD + MI rats. The LF component of blood pressure variability (BPV) was increased in the MI, SAD and SAD + MI groups compared with the control group. Mortality was higher in the MI groups compared with the non-infarcted groups, with an additional increase in mortality in the SAD + MI group compared with the MI group. Correlations were obtained between BRS and the LF component of HRV and between LV mass and the LF component of BPV. 4. Together, the results indicate that the abolishment of BRS induced by SAD in MI rats further reduces the LF band of HRV, resulting in a worse cardiac remodelling and increased mortality in these rats. These data highlight the importance of this mechanism in the prognosis of patients after an ischaemic event.