79 resultados para Human neuroblastome cells
Resumo:
Annatto (AN), a natural food colorant rich in carotenoids, has been reported as being an effective antioxidant, but little is known about its potential chemopreventive properties. In this Study, we evaluated the ability of AN to protect human hepatoma cells (HepG2) from micronucleus (MN) induction against three different mutagens: benzo(a)pyrene (B(a)P), doxorubicin (DXR), and methyl methanesulfonate (MMS). In an attempt to clarify the possible mechanism of anti mutagenicity of AN, three protocols of treatment were applied (pretreatment; simultaneous treatment, and post-treatment with AN following treatment with the mutagens). Also, cells exposed only to AN were assayed for cytotoxicity and mutagenicity. A dosage up to 10 mu g/ml of AN was devoid of mutagenic activity. Protective effects were seen on micronuclei induced by B(a)P and DXR using pre and simultaneous treatment, but AN had no significant effect on MN induction by MMS in any of the protocols. Our results also show that exposure of cells to concentrations of AN higher than 10 mu g/ml decreased cell viability. Taken together, our findings indicate that AN presents antimutagenic activity in vitro, but its protective effect is dependent on the mutagen and on type of treatment suggesting its potential use as a chemopreventive agent. Environ. Mol. Mutagen. 50:808-814, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
We examined the effects of polyarticular juvenile idiopathic arthritis (pJIA) serum on proliferation, differentiation, mineralization, and apoptosis of human osteoblast cells (hOb) in culture. The hOb were cultured with 10% serum from active pJIA and healthy controls (CT) and were tested for DNA synthesis, alkaline phosphatase (AP) activity, osteocalcin (OC) secretion, calcium levels, caspase 3 activity, and DNA fragmentation. None of the patients had used glucocorticoids for at least 1 month before the study, or any other drug that can affect bone mineral metabolism. Human inflammatory cytokine levels (IL-6, IL-8, IL-10, IL-1 beta, TNF-alpha, and IL-12p70) were measured in pJIA and CT sera. Low levels of AP activity was observed in pJIA cultures compared with CT cultures (67.16 +/- 53.35 vs 100.11 +/- 50.64 mu mol p-nitrophenol/h(-1) mg(-1) protein, P=0.008). There was also a significant decrease in OC secretion (9.23 +/- 5.63 vs 12.82 +/- 7.02 ng/mg protein, P=0.012) and calcium levels (0.475 +/- 0.197 vs 0.717 +/- 0.366 mmol/l, P=0.05) in pJIA hOb cultures. No difference was observed in cell proliferation (323.56 +/- 108.23 vs 328.91 +/- 88.03 dpm/mg protein, P=0.788). Osteoblasts cultured with JIA sera showed lower levels of DNA and increased fragmentation than osteoblasts cultured with CT sera. pJIA sera showed higher IL-6 values than CT (21.44 +/- 9.31 vs 3.58 +/- 2.38 pg/ml, P<0.001), but no difference was observed related to IL-8, IL-10, IL-1 beta, TNF-alpha, and IL-12p70 between pJIA and controls. This study suggests that serum from children with pJIA inhibits differentiation, mineralization and may increase apoptosis of hOb cultures, and inflammatory cytokines such as IL-6 might be a mechanism in this find. These results may represent an alternative therapeutic target for prevention and treatment of bone loss in JIA.
Resumo:
Two humanized monoclonal antibody constructs bearing the same variable regions of an anti-CD3 monoclonal antibody, whole IgG and FvFc, were expressed in CHO cells. Random and site-specific integration were used resulting in similar expression levels. The transfectants were selected with appropriate selection agent, and the surviving cells were plated in semi-solid medium for capture with FITC-conjugated anti-human IG antibody and picked with the robotic ClonePix FL. Conditioned media from selected clones were purified by affinity chromatography and characterized by SDS-PAGE, Western-blot, SEC-HPLC, and isoelectric focusing. Binding to the target present in healthy human mononuclear cells was assessed by flow cytometry, as well as by competition between the two constructs and the original murine monoclonal antibody. The humanized constructs were not able to dislodge the murine antibody while the murine anti-CD3 antibody could dislodge around 20% of the FvFc or IgG humanized versions. Further in vitro and in vivo pre-clinical analyses will be carried out to verify the ability of the humanized versions to demonstrate the immunoregulatory profile required for a humanized anti-CD3 monoclonal antibody.
Resumo:
The taxane docetaxel is currently the most effective chemotherapeutic drug for the treatment of advanced breast cancer. However, a considerable proportion of breast cancer patients do not respond positively to docetaxel. The mechanisms of docetaxel resistance are poorly understood. Overexpression of ERBB2 occurs in 15-30% of breast tumors and is associated with chemoresistance to a variety of anticancer drugs. In the present study, we sought to identify genes involved in ERBB2-mediated chemoresistance to docetaxel. We generated SAGE libraries from two human mammary cell lines expressing basal (HB4a) and high (C5.2) levels of ERBB2 before and after intensive exposure to docetaxel and identified potential ERBB2 target genes implicated in a variety of cellular processes including cell proliferation, cell adhesion, apoptosis and cytoskeleton organization. Comparison of the transcriptome of the cell lines before and after docetaxel exposure revealed substantially different expression patterns. Twenty-one differentially expressed genes between HB4a and C5.2 cell lines, before and after docetaxel treatment, were further analyzed by qPCR. The alterations in the expression patterns in HB4a and C5.2 cell lines in response to docetaxel treatment observed by SAGE analysis were confirmed by qPCR for the majority of the genes analyzed. Our study provides a comprehensive view of the expression changes induced in two human mammary cells expressing different levels of ERBB2 in response to docetaxel that could contribute to the elucidation of the mechanisms involved in ERBB2-mediated chemoresistance in breast cancer.
Resumo:
CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas.
Resumo:
Mechanisms regulating NADPH oxidase remain open and include the redox chaperone protein disulfide isomerase (PDI). Here, we further investigated PDI effects on vascular NADPH oxidase. VSMC transfected with wild-type PDI (wt-PDI) OF PDI mutated in all four redox cysteines (mut-PDI) enhanced (2.5-fold) basal cellular ROS production and membrane NADPH oxidase activity, with 3-fold increase in Nox1, but not Nox4 mRNA. However, further ROS production, NADPH oxidase activity and Nox1 mRNA increase triggered by angiotensin-II (AngII) were totally lost with PDI overexpression, suggesting preemptive Nox1 activation in such cells. PDI overexpression increased Nox4 mRNA after AngII stimulus, although without parallel ROS increase. We also show that Nox inhibition by the nitric oxide donor GSNO is independent of PDI. PDI silencing decreased specifically Nox1 mRNA and protein, confirming that PDI may regulate Nox1 at transcriptional level in VSMC. Such data further strengthen the role of PDI as novel NADPH oxidase regulator. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated four polymorphisms located in the DC-SIGN (CD209) gene promoter region (positions -336, -332 -201 and -139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify CD209 SNPs, 452 bp of the CD209 promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the CD209 gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that -336A and -139A SNPs were quite common in Asians and that the -201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the -336A variant was more frequent in HTLV-1 -infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80%; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [P=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218-5.179). In addition, the -139A allele was found to be associated with protection against HTLV-1 infection (P=0.0037, OR=0.3758, 95% CI=0.1954-0.7229) when the HTLV-1 -infected patients as a whole were compared with the healthy-control group. These observations suggest that the -139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs -336 and -139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections.
Resumo:
Objective: In this study, we determined the protective effect of isoflavones from Glycine max on human umbilical vein endothelial cell (ECV304) damage induced by hydrogen peroxide (H(2)O(2)) and on nitric oxide (NO) production. Methods: We studied the regulation of NO synthesis in cultured human endothelial cells by phytoestrogens contained in soy extracts in the presence or absence of ICI 182,780 or N(omega)-nitro-L-arginine methyl esther and determined the protective effect of these isoflavones on ECV304 damage induced by H(2)O(2). Results: We show that soy extracts activate NO synthesis in endothelial cells and protect against cell damage. Conclusions: In conclusion, soy isoflavones markedly protect ECV304 cells against H(2)O(2) damage and promote NO synthesizing. Therefore, these isoflavones call potentially act as an NO promoter and as an antioxidant.
Resumo:
The aim of the present study was to evaluate the in vitro osteogenic potential of subcultured human osteoblastic cells derived from alveolar bone on a titanium (Ti) surface produced by an anodized alkali treatment (BSP-AK). Primary osteoblastic cells were subcultured on BSP-AK and machined Ti discs (control) and grown for periods of up to 21 days under osteogenic conditions. Morphologic and biochemical methods were used to assess important parameters of in vitro bone-like tissue formation. Although no major differences were observed between the BSP-AK and the control Ti surface in terms of cell attachment and mineralized matrix formation, a significant increase in cell population, ALP activity, and collagen content was detected in cultures on BSP-AK surface. Our results demonstrate that human osteoblastic cells are sensitive to the BSP-AK-modified Ti surface during the transitional stage between the end of the proliferative phase and the onset of the differentiation /matrix maturation ones. Together with the good mechanical properties exhibited by the Ca- and P- coating, our findings suggest that BSP-AK treatment could be useful for the development of a new surface for dental and orthopedic implants. (c) 2008 Wiley Periodicals, Inc.J Biomed Mater Res 88A: 841-848, 2009
Resumo:
The isoforms of the Na+/H+ exchanger present in T84 human colon cells were identified by functional and molecular methods. Cell pH was measured by fluorescence microscopy using the probe BCECF. Based on the pH recovery after an ammonium pulse and determination of buffering capacity of these cells, the rate of H+ extrusion (J(H)) was 3.68 mM/min. After the use of the amiloride derivative HOE-694 at 25 mu M, which inhibits the isoforms NHE1 and NHE2, there remained 43% of the above transport rate, the nature of which was investigated. Evidence of the presence of NHE1, NHE2, and NHE4 was obtained by reverse transcriptase polymerase chain reaction (RT-PCR) (mRNA) and Western blot. There was no decrease of J(H) by the NHE3 inhibitor S3226 (1 mu M) and no evidence of this isoform by RT-PCR was found. The following functional evidence for the presence of NHE4 was obtained: 25 mu M EIPA abolished J(H) entirely, but NHE4 was not inhibited at 10 mu M; substitution of Na by K increased the remainder, a property of NHE4; hypertonicity also increased this fraction of J(H). Cl--dependent NHE was not detected: in 0 Cl- solutions J(H) was increased and not reduced. In 0 Cl- cell volume decreased significantly, which was abolished by the Cl- channel blocker NPPB, indicating that the 0 Cl- effect was because of reduction of cell volume. In conclusion, T84 human colon cells contain three isoforms of the Na+/H+ exchanger, NHE1, NHE2, and NHE4, but not the Cl-dependent NHE.
Resumo:
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin beta(13). It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The V(H) CDR3 peptide from mAb A4 and V(L) CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.
Resumo:
Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.
Resumo:
The human protein Ki-1/57 was first identified through the cross reactivity of the anti-CD30 monoclonal antibody Ki-1; in Hodgkin lymphoma cells. The expression of Ki-1/57 in diverse cancer cells and its phosphorylation in peripheral blood leukocytes after mitogenic activation suggested its possible role in cell signaling. Ki-1/57 interacts with several other regulatory proteins involved in cellular signaling, transcriptional regulation and RNA metabolism, suggesting it may have pleiotropic functions. In a previous spectroscopic analysis, we observed a low content of secondary structure for Ki-1/57 constructs. Here, Circular dichroism experiments, in vitro RNA binding analysis, and limited proteolysis assays of recombinant Ki-1/57(122-413) and proteolysis assays of endogenous full length protein from human HEK293 cells suggested that Ki-1/57 has characteristics of an intrinsically unstructured protein. Small-angle X-ray scattering (SAXS) experiments were performed with the C-terminal fragment Ki-1/57(122-413). These results indicated an elongated shape and a partially unstructured conformation of the molecule in solution, confirming the characteristics of an intrinsically unstructured protein. Experimental curves together with ab initio modeling approaches revealed an extended and flexible molecule in solution. An elongated shape was also observed by analytical gel filtration. Furthermore, sedimentation velocity analysis suggested that Ki-1/57 is a highly asymmetric protein. These findings may explain the functional plasticity of Ki-1/57, as suggested by the wide array of proteins with which it is capable of interacting in yeast two-hybrid interaction assays.
Resumo:
Em 1999, as células-tronco foram eleitas "Scientific Breakthrough of the Year" (avanço científico do ano) pela revista Science¹. Naquele ano, foi demonstrado que células-tronco de tecidos adultos mantinham a capacidade de se diferenciar em outros tipos de tecidos. No ano anterior, as primeiras linhagens de células-tronco embrionárias humanas foram estabelecidas. Desde então, o número de artigos científicos sobre células-tronco vem crescendo exponencialmente, onde novos paradigmas são estabelecidos. Neste artigo, farei uma revisão da área de células-tronco com um foco especial em seu uso como agente terapêutico em doenças comuns como diabetes e cardiopatias. As células-tronco serão tratadas em dois grupos distintos: as embrionárias e as adultas. Enquanto o potencial de diferenciação das primeiras está bem caracterizado em camundongos e em humanos, seu uso em terapia celular e em pesquisa tem sido dificultado por questões de histocompatibilidade, segurança e ética. Em contraste, células-tronco adultas não apresentam estes empecilhos, apesar da extensão de sua plasticidade ainda estar sob investigação. Mesmo assim, diversos testes clínicos em humanos estão em andamento utilizando células-tronco adultas, principalmente derivadas da medula óssea. Discutirei ainda a importância de se trabalhar com as duas classes de células-tronco humanas de forma a se cumprir suas promessas terapêuticas.
Resumo:
Background: Leukotriene B(4) (LTB(4)) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB(4) released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB(4)-loaded MS. Results: In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB(4)-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB(4)-loaded MS also increase peroxisome proliferator-activated receptor-alpha (PPAR alpha) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-I (MCP-I) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB(4)-loaded MS. Conclusion: LTB(4)-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response.