158 resultados para Hierarchical dynamic models
Resumo:
In this paper, we compare the performance of two statistical approaches for the analysis of data obtained from the social research area. In the first approach, we use normal models with joint regression modelling for the mean and for the variance heterogeneity. In the second approach, we use hierarchical models. In the first case, individual and social variables are included in the regression modelling for the mean and for the variance, as explanatory variables, while in the second case, the variance at level 1 of the hierarchical model depends on the individuals (age of the individuals), and in the level 2 of the hierarchical model, the variance is assumed to change according to socioeconomic stratum. Applying these methodologies, we analyze a Colombian tallness data set to find differences that can be explained by socioeconomic conditions. We also present some theoretical and empirical results concerning the two models. From this comparative study, we conclude that it is better to jointly modelling the mean and variance heterogeneity in all cases. We also observe that the convergence of the Gibbs sampling chain used in the Markov Chain Monte Carlo method for the jointly modeling the mean and variance heterogeneity is quickly achieved.
Resumo:
In this paper we present a hierarchical Bayesian analysis for a predator-prey model applied to ecology considering the use of Markov Chain Monte Carlo methods. We consider the introduction of a random effect in the model and the presence of a covariate vector. An application to ecology is considered using a data set related to the plankton dynamics of lake Geneva for the year 1990. We also discuss some aspects of discrimination of the proposed models.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Two stochastic epidemic lattice models, the susceptible-infected-recovered and the susceptible-exposed-infected models, are studied on a Cayley tree of coordination number k. The spreading of the disease in the former is found to occur when the infection probability b is larger than b(c) = k/2(k - 1). In the latter, which is equivalent to a dynamic site percolation model, the spreading occurs when the infection probability p is greater than p(c) = 1/(k - 1). We set up and solve the time evolution equations for both models and determine the final and time-dependent properties, including the epidemic curve. We show that the two models are closely related by revealing that their relevant properties are exactly mapped into each other when p = b/[k - (k - 1) b]. These include the cluster size distribution and the density of individuals of each type, quantities that have been determined in closed forms.
Resumo:
Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers. whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms. Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC). the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Frutalin is a homotetrameric alpha-D-galactose (D-Gal)-binding lectin that activates natural killer cells in vitro and promotes leukocyte migration in vivo. Because lectins are potent lymphocyte stimulators, understanding the interactions that occur between them and cell surfaces can help to the action mechanisms involved in this process. In this paper, we present a detailed investigation of the interactions of frutalin with phospho- and glycolipids using Langmuir monolayers as biomembrane models. The results confirm the specificity of frutalin for D-Gal attached to a biomembrane. Adsorption of frutalin was more efficient for the galactose polar head lipids, in contrast to the one for sulfated galactose, in which a lag time is observed, indicating a rearrangement of the monolayer to incorporate the protein. Regarding ganglioside GM1 monolayers, lower quantities of the protein were adsorbed, probably due to the farther apart position of D-galactose from the interface. Binary mixtures containing galactocerebroside revealed small domains formed at high lipid packing in the presence of frutalin, suggesting that lectin induces the clusterization and the forming of domains in vitro, which may be a form of receptor internalization. This is the first experimental evidence of such lectin effect, and it may be useful to understand the mechanism of action of lectins at the molecular level. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dynamic Time Warping (DTW), a pattern matching technique traditionally used for restricted vocabulary speech recognition, is based on a temporal alignment of the input signal with the template models. The principal drawback of DTW is its high computational cost as the lengths of the signals increase. This paper shows extended results over our previously published conference paper, which introduces an optimized version of the DTW I hat is based on the Discrete Wavelet Transform (DWT). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Resumo:
The aim of this study was to comparatively assess dental arch width, in the canine and molar regions, by means of direct measurements from plaster models, photocopies and digitized images of the models. The sample consisted of 130 pairs of plaster models, photocopies and digitized images of the models of white patients (n = 65), both genders, with Class I and Class II Division 1 malocclusions, treated by standard Edgewise mechanics and extraction of the four first premolars. Maxillary and mandibular intercanine and intermolar widths were measured by a calibrated examiner, prior to and after orthodontic treatment, using the three modes of reproduction of the dental arches. Dispersion of the data relative to pre- and posttreatment intra-arch linear measurements (mm) was represented as box plots. The three measuring methods were compared by one-way ANOVA for repeated measurements (α = 0.05). Initial / final mean values varied as follows: 33.94 to 34.29 mm / 34.49 to 34.66 mm (maxillary intercanine width); 26.23 to 26.26 mm / 26.77 to 26.84 mm (mandibular intercanine width); 49.55 to 49.66 mm / 47.28 to 47.45 mm (maxillary intermolar width) and 43.28 to 43.41 mm / 40.29 to 40.46 mm (mandibular intermolar width). There were no statistically significant differences between mean dental arch widths estimated by the three studied methods, prior to and after orthodontic treatment. It may be concluded that photocopies and digitized images of the plaster models provided reliable reproductions of the dental arches for obtaining transversal intra-arch measurements.
Resumo:
Dental impression is an important step in the preparation of prostheses since it provides the reproduction of anatomic and surface details of teeth and adjacent structures. The objective of this study was to evaluate the linear dimensional alterations in gypsum dies obtained with different elastomeric materials, using a resin coping impression technique with individual shells. A master cast made of stainless steel with fixed prosthesis characteristics with two prepared abutment teeth was used to obtain the impressions. References points (A, B, C, D, E and F) were recorded on the occlusal and buccal surfaces of abutments to register the distances. The impressions were obtained using the following materials: polyether, mercaptan-polysulfide, addition silicone, and condensation silicone. The transfer impressions were made with custom trays and an irreversible hydrocolloid material and were poured with type IV gypsum. The distances between identified points in gypsum dies were measured using an optical microscope and the results were statistically analyzed by ANOVA (p < 0.05) and Tukey's test. The mean of the distances were registered as follows: addition silicone (AB = 13.6 µm, CD=15.0 µm, EF = 14.6 µm, GH=15.2 µm), mercaptan-polysulfide (AB = 36.0 µm, CD = 36.0 µm, EF = 39.6 µm, GH = 40.6 µm), polyether (AB = 35.2 µm, CD = 35.6 µm, EF = 39.4 µm, GH = 41.4 µm) and condensation silicone (AB = 69.2 µm, CD = 71.0 µm, EF = 80.6 µm, GH = 81.2 µm). All of the measurements found in gypsum dies were compared to those of a master cast. The results demonstrated that the addition silicone provides the best stability of the compounds tested, followed by polyether, polysulfide and condensation silicone. No statistical differences were obtained between polyether and mercaptan-polysulfide materials.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady - shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5 - 35ºC. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G' and G" moduli than the variation in temperature.
Resumo:
The purpose of this study was to develop and validate equations to estimate the aboveground phytomass of a 30 years old plot of Atlantic Forest. In two plots of 100 m², a total of 82 trees were cut down at ground level. For each tree, height and diameter were measured. Leaves and woody material were separated in order to determine their fresh weights in field conditions. Samples of each fraction were oven dried at 80 °C to constant weight to determine their dry weight. Tree data were divided into two random samples. One sample was used for the development of the regression equations, and the other for validation. The models were developed using single linear regression analysis, where the dependent variable was the dry mass, and the independent variables were height (h), diameter (d) and d²h. The validation was carried out using Pearson correlation coefficient, paired t-Student test and standard error of estimation. The best equations to estimate aboveground phytomass were: lnDW = -3.068+2.522lnd (r² = 0.91; s y/x = 0.67) and lnDW = -3.676+0.951ln d²h (r² = 0.94; s y/x = 0.56).
Resumo:
In this work we study the problem of modeling identification of a population employing a discrete dynamic model based on the Richards growth model. The population is subjected to interventions due to consumption, such as hunting or farming animals. The model identification allows us to estimate the probability or the average time for a population number to reach a certain level. The parameter inference for these models are obtained with the use of the likelihood profile technique as developed in this paper. The identification method here developed can be applied to evaluate the productivity of animal husbandry or to evaluate the risk of extinction of autochthon populations. It is applied to data of the Brazilian beef cattle herd population, and the the population number to reach a certain goal level is investigated.
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the treatment of major parasitic infectious diseases, with special emphasis on its role in the discovery of new drugs against schistosomiasis, a tropical disease that affects millions of people worldwide. In the present work, we have determined the inhibitory potency and developed descriptor- and fragment-based quantitative structure-activity relationships (QSAR) for a series of 9-deazaguanine analogs as inhibitors of SmPNP. Significant statistical parameters (descriptor-based model: r² = 0.79, q² = 0.62, r²pred = 0.52; and fragment-based model: r² = 0.95, q² = 0.81, r²pred = 0.80) were obtained, indicating the potential of the models for untested compounds. The fragment-based model was then used to predict the inhibitory potency of a test set of compounds, and the predicted values are in good agreement with the experimental results