18 resultados para Hernberg, Rolf
Resumo:
Systemic inflammation after augmentation mammaplasty with modern silicone implants is not currently recognized. In a prospective controlled study, C-reactive protein and other variables were monitored, aiming to test this hypothesis in a young cohort of patients. Females (18-30 years old, BMI = 18.5-30 kg/m(2), N = 52) were consecutively recruited for breast implant (n = 24, Group I) and for abdominal liposuction (n = 28, Group II/Controls). Patients were interviewed at baseline and followed until 6 months after operation. Variables included demographic and clinical information, surgical outcome, inflammatory markers and autoantibodies. Operations were well tolerated, without surgical or infectious complications. Mean prosthesis size was 258 +/- A 21 ml (range = 220-280) and mean aspirate of liposuction was 1972 +/- A 499 ml (range = 1200-3000). Preoperative, 2-month, and 6-month C-reactive protein concentrations for breast implant patients were 1.3 +/- A 1.2, 4.8 +/- A 3.0, and 4.3 +/- A 6.4 mg/l and for liposuction 3.5 +/- A 2.7, 3.5 +/- A 2.1, and 2.2 +/- A 2.2 mg/l, respectively. Change at 2 months was significant (p = 0.001). Autoantibody investigation failed to reveal remarkable aberrations, except for anticardiolipin elevation, which was nearly symmetrical in the two groups. C-reactive protein levels increased after operation and correlated with proinflammatory and procoagulatory indices. A mild increase in anticardiolipin IgM occurred but differences between populations were lacking. Despite excellent cosmetic outcomes and lack of complications, acute phase reaction could signal ongoing immunogenicity of silicone and long-term monitoring is recommended.
Resumo:
1,3-beta-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal beta-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90 degrees C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
This paper describes the automation of a fully electrochemical system for preconcentration, cleanup, separation and detection, comprising the hyphenation of a thin layer electrochemical flow cell with CE coupled with contactless conductivity detection (CE-C(4)D). Traces of heavy metal ions were extracted from the pulsed-flowing sample and accumulated on a glassy carbon working electrode by electroreduction for some minutes. Anodic stripping of the accumulated metals was synchronized with hydrodynamic injection into the capillary. The effect of the angle of the slant polished tip of the CE capillary and its orientation against the working electrode in the electrochemical preconcentration (EPC) flow cell and of the accumulation time were studied, aiming at maximum CE-C(4)D signal enhancement. After 6 min of EPC, enhancement factors close to 50 times were obtained for thallium, lead, cadmium and copper ions, and about 16 for zinc ions. Limits of detection below 25 nmol/L were estimated for all target analytes but zinc. A second separation dimension was added to the CE separation capabilities by staircase scanning of the potentiostatic deposition and/or stripping potentials of metal ions, as implemented with the EPC-CE-C(4)D flow system. A matrix exchange between the deposition and stripping steps, highly valuable for sample cleanup, can be straightforwardly programmed with the multi-pumping flow management system. The automated simultaneous determination of the traces of five accumulable heavy metals together with four non-accumulated alkaline and alkaline earth metals in a single run was demonstrated, to highlight the potentiality of the system.