107 resultados para Hazardous materials.
Resumo:
Lead (Pb) contamination in the black paper that recovers intraoral films (BKP) has been investigated. BKP samples were collected from the Radiology Clinics of the Dental School of Ribeirao Preto, University of Sao Paulo, Brazil. For sake of comparison, four different methods were used. The results revealed the presence of high lead levels, well above the maximum limit allowed by the legislation. Pb contamination levels achieved after the following treatments: paper digestion in nitric acid, microwave treatment, DIN38414-54 method and TCLP method were 997 mu g g(-1), 189 mu g g(-1), 20.8 mu g g(-1), and 54.0 mu g g(-1), respectively. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma mass spectrometry (ICP-MS) were employed for lead determination according to the protocols of the applied methods. Lead contamination in used BKP was confirmed by scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDS). All the SEM imaging was carried out in the secondary electron mode (SE) and backscattered-electron mode (QBSD) following punctual X-ray fluorescence spectra. Soil contamination derived from this product revealed the urgent need of addressing this problem. These elevated Pb levels, show that a preliminary treatment of BKP is mandatory before it is disposed into the common trash. The high lead content of this material makes its direct dumping into the environment unwise. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Wastewater control at storage terminals of liquid chemical products in bulk is very difficult because of the variety of products handled in the facilities generating effluents of variable composition. The main objective of this work was to verify if the Vibrio fischeri acute toxicity test could be routinely included in the wastewater management of those facilities along with physical and chemical analysis in order to evaluate and improve the quality of the generated effluents. The study was performed in two phases before and after the implementation of better operational practices/treatment technologies. Chemical oxygen demand (COD) and toxicity of treated effluents did not correlate showing that effluents with low COD contain toxic substances and non-biodegradable organic matter, which may be not degraded when discharged into the aquatic environment. Segregation of influents or pre-treatment based on toxicity results and biodegradability index were implemented in the facilities generating significant improvements in the quality of final effluents with reduction of Biochemical oxygen demand (BOD) and toxicity. The integration of physical and chemical analysis with the V.fischeri toxicity test turned out to be an excellent tool for wastewater management in chemical terminals allowing rapid decision making for pollution control and prevention measures. Reuse of rain water was also proposed and when implemented by the facilities resulted in economical and environmental benefits. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The addition of 0.5 mM catechol is shown to accelerate the degradation and mineralization of the anionic surfactant DOWFaX (TM) 2A1 (sodium dodecyldiphenyloxide disulfonate) under conventional Fenton reaction conditions (Fe(II) plus H(2)O(2) at pH 3). The catalytic effect causes a 3-fold increase in the initial rate (up to ca. 20 min) of conversion of the surfactant to oxidation products (apparent first-order rate constants of 0.021 and 0.061 min(-1) in the absence and presence of catechol, respectively). Although this catalytic rate increase persists for a certain amount of time after complete disappearance of catechol itself (ca. 8 min), the reaction rate begins to decline slowly after the initial 20 min towards that observed in the absence of added catechol. Total organic carbon (TOC) measurements of net mineralization and cyclic voltammetric and high performance liquid chromatographic (HPLC) measurements of the initial rate of reaction of catechol and the surfactant provide insight into the role of catechol in promoting the degradation of the surfactant and of degradation products as the eventual inhibitors of the Fenton reaction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work the effect of doping concentration and depth profile of Cu atoms on the photocatalytic and surface properties of TiO(2) films were studied. TiO(2) films of about 200 nn thickness were deposited on glass substrates on which a thin Cu layer (5 nm) was deposited. The films were annealed during 1 s to 100 degrees C and 400 degrees C, followed by chemical etching of the Cu film. The grazing incidence X-ray fluorescence measurements showed a thermal induced migration of Cu atoms to depths between 7 and 31 nm. The X-ray photoelectron spectroscopy analysis detected the presence of TiO(2), Cu(2)O and Cu(0) phases and an increasing Cu content with the annealing temperature. The change of the surface properties was monitored by the increasing red-shift and absorption of the ultraviolet-visible spectra. Contact angle measurements revealed the formation of a highly hydrophilic surface for the film having a medium Cu concentration. For this sample photocatalytic assays, performed by methylene blue discoloration, show the highest activity. The proposed mechanism of the catalytic effect, taking place on Ti/Cu sites, is supported by results obtained by theoretical calculations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present paper presents the study of the decolourisation of real textile effluent by constant current electrolysis in a flow-cell using a DSAO type material. The effect of using different anode materials (Ti/Ru0.3Ti0.7O2; Ti/Ir0.3Ti0.7O2; Ti/RuxSn1-xO2, where X = 0.1, 0.2 or 0.3) on the efficiency of colour removal is discussed. Attempts to perform galvanostatic oxidation (40 and 60 mA cm(-2)) on the as-received effluent demonstrate that colour removal and total organic carbon (TOC) removal are limited. In this case the greatest degree of colour removal is achieved when anode containing 90% SnO2 is used. If the conductivity of the effluent is increased by adding NaCl (0.1 mol L-1) appreciable colour/TOC removal is observed. The efficiencies of colour and TOC removal are discussed in terms of the energy per order (E-EO/kWhm(-3) order(-1)) and energy consumption (E-C/kW h kg(-1) TOC), respectively. Finally, the extent of colour removal is compared to consent levels presented in the literature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the results concerning the degradation of the pesticide carbaryl comparing two methods: electrochemical (EC) and photo-assisted electrochemical (PAEC). The experimental variables of applied current density, electrolyte flow-rate and initial carbaryl concentration were investigated. The results demonstrate that the electrochemical degradation of carbaryl was greatly enhanced when simultaneous UV light was applied. The greatest difference between the PAEC and EC method was apparent when lower current densities were applied. The extent of COD removal was much enhanced for the combined method, independent of the applied current density. It should be noted that the complete removal of carbaryl was achieved with out the need to add NaCl to the reaction mixture, avoiding the risk of chlorinated organic species formation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10(21) atoms cm(-3), respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman`s spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 00). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dental impression is an important step in the preparation of prostheses since it provides the reproduction of anatomic and surface details of teeth and adjacent structures. The objective of this study was to evaluate the linear dimensional alterations in gypsum dies obtained with different elastomeric materials, using a resin coping impression technique with individual shells. A master cast made of stainless steel with fixed prosthesis characteristics with two prepared abutment teeth was used to obtain the impressions. References points (A, B, C, D, E and F) were recorded on the occlusal and buccal surfaces of abutments to register the distances. The impressions were obtained using the following materials: polyether, mercaptan-polysulfide, addition silicone, and condensation silicone. The transfer impressions were made with custom trays and an irreversible hydrocolloid material and were poured with type IV gypsum. The distances between identified points in gypsum dies were measured using an optical microscope and the results were statistically analyzed by ANOVA (p < 0.05) and Tukey's test. The mean of the distances were registered as follows: addition silicone (AB = 13.6 µm, CD=15.0 µm, EF = 14.6 µm, GH=15.2 µm), mercaptan-polysulfide (AB = 36.0 µm, CD = 36.0 µm, EF = 39.6 µm, GH = 40.6 µm), polyether (AB = 35.2 µm, CD = 35.6 µm, EF = 39.4 µm, GH = 41.4 µm) and condensation silicone (AB = 69.2 µm, CD = 71.0 µm, EF = 80.6 µm, GH = 81.2 µm). All of the measurements found in gypsum dies were compared to those of a master cast. The results demonstrated that the addition silicone provides the best stability of the compounds tested, followed by polyether, polysulfide and condensation silicone. No statistical differences were obtained between polyether and mercaptan-polysulfide materials.
Resumo:
This study evaluated the response of the subcutaneous connective tissue of BALB/c mice to root filling materials indicated for primary teeth: zinc oxide/eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO) and Sealapex sealer. The mice (n=102) received polyethylene tube implants with the materials, thereby forming 11 groups, as follows: I, II, III: Calen/ZO for 7, 21 and 63 days, respectively; IV, V, VI: Sealapex for 7, 21 and 63 days, respectively; VII, VIII, IX: ZOE for 7, 21 and 63 days, respectively; X and XI: empty tube for 7 and 21 days, respectively. The biopsied tissues were submitted to histological analysis (descriptive analysis and semi-quantitative analysis using a scoring system for collagen fiber formation, tissue thickness and inflammatory infiltrate). A quantitative analysis was performed by measuring the area and thickness of the granulomatous reactionary tissue (GRT). Data were analyzed by Kruskal-Wallis, ANOVA and Tukey's post-hoc tests (?=0.05). There was no significant difference (p>0.05) among the materials with respect to collagen fiber formation or GRT thickness. However, Calen/ZO produced the least severe inflammatory infiltrate (p<0.05). The area of the GRT was significantly smaller (p<0.05) for Calen/ZO and Sealapex. In conclusion, Calen/ZO presented the best tissue reaction, followed by Sealapex and ZOE.
Resumo:
This study aimed to assess the response of apical and periapical tissues of dogs' teeth after root canal filling with different materials. Forty roots from dogs' premolars were prepared biomechanically and assigned to 4 groups filled with: Group I: commercial calcium hydroxide and polyethylene glycol-based paste (Calen®) thickened with zinc oxide; Group II: paste composed of iodoform, Rifocort® and camphorated paramonochlorophenol; Group III: zinc oxide-eugenol cement; Group IV: sterile saline. After 30 days, the samples were subjected to histological processing. The histopathological findings revealed that in Groups I and IV the apical and periapical regions exhibited normal appearance, with large number of fibers and cells and no resorption of mineralized tissues. In Group II, mild inflammatory infiltrate and mild edema were observed, with discrete fibrogenesis and bone resorption. Group III showed altered periapical region and thickened periodontal ligament with presence of inflammatory cells and edema. It may be concluded that the Calen paste thickened with zinc oxide yielded the best tissue response, being the most indicated material for root canal filling of primary teeth with pulp vitality.
Resumo:
This study evaluated in vitro the antibacterial activity of 4 root canal filling materials for primary teeth - zinc oxide and eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO), Sealapex sealer and EndoREZ sealer - against 5 bacterial strains commonly found in endodontic infections (Kocuria rhizophila, Enterococcus faecalis, Streptococcus mutans, Escherichia coli and Staphylococcus aureus) using the agar diffusion test (agar-well technique). Calen paste, 1% chlorhexidine digluconate (CHX) and distilled water served as controls. Seven wells per dish were made at equidistant points and immediately filled with the test and control materials. After incubation of the plates at 37oC for 24 h, the diameter of the zones of bacterial growth inhibition produced around the wells was measured (in mm) with a digital caliper under reflected light. Data were analyzed statistically by analysis of variance and Tukey's post-hoc test (?=0.05). There were statistically significant differences (p<0.0001) among the zones of bacterial growth inhibition produced by the different materials against all target microorganisms. K. rhizophila was inhibited more effectively (p<0.05) by ZOE, while Calen/ZO had its highest antibacterial activity against E. faecalis (p<0.05). S. mutans was inhibited by Calen/ZO, Sealapex and ZOE in the same intensity (p>0.05). E. coli was inhibited more effectively (p<0.05) by ZOE, followed by Calen/ZO and Sealapex. Calen/ZO and ZOE were equally effective (p>0.05) against S. aureus, while Sealapex had the lowest antibacterial efficacy (p<0.05) against this microorganism. EndoREZ presented antibacterial activity only against K. rhizophila and S. aureus. The Calen paste and Calen/ZO produced larger zones of inhibition than 1% CHX when the marker microorganism was E faecalis. In conclusion, the in vitro antibacterial activity of the 4 root canal filling materials for primary teeth against bacterial strains commonly found in endodontic infections can be presented in a decreasing order of efficacy as follows: ZOE>Calen/ZO>Sealapex>EndoREZ.
Resumo:
Several impression materials are available in the Brazilian marketplace to be used in oral rehabilitation. The aim of this study was to compare the accuracy of different impression materials used for fixed partial dentures following the manufacturers' instructions. A master model representing a partially edentulous mandibular right hemi-arch segment whose teeth were prepared to receive full crowns was used. Custom trays were prepared with auto-polymerizing acrylic resin and impressions were performed with a dental surveyor, standardizing the path of insertion and removal of the tray. Alginate and elastomeric materials were used and stone casts were obtained after the impressions. For the silicones, impression techniques were also compared. To determine the impression materials' accuracy, digital photographs of the master model and of the stone casts were taken and the discrepancies between them were measured. The data were subjected to analysis of variance and Duncan's complementary test. Polyether and addition silicone following the single-phase technique were statistically different from alginate, condensation silicone and addition silicone following the double-mix technique (p < .05), presenting smaller discrepancies. However, condensation silicone was similar (p > .05) to alginate and addition silicone following the double-mix technique, but different from polysulfide. The results led to the conclusion that different impression materials and techniques influenced the stone casts' accuracy in a way that polyether, polysulfide and addition silicone following the single-phase technique were more accurate than the other materials.
Resumo:
OBJECTIVES: To evaluate the color stability and hardness of two denture liners obtained by direct and indirect techniques, after thermal cycling and immersion in beverages that can cause staining of teeth. MATERIAL AND METHODS: Seventy disc-shaped specimens (18 x 3 mm) processed by direct (DT) and indirect techniques (IT) were made from Elite soft (n=35) and Kooliner (n=35) denture liners. For each material and technique, 10 specimens were subjected to thermal cycling (3,000 cycles) and 25 specimens were stored in water, coffee, tea, soda and red wine for 36 days. The values of color change, Shore A hardness (Elite soft) and Knoop hardness (Kooliner) were obtained. The data were subjected to ANOVA, Tukey's multiple-comparison test, and Kruskal-Wallis test (P<0.05). RESULTS: The thermal cycling promoted a decrease on hardness of Kooliner regardless of the technique used (Initial: 9.09± 1.61; Thermal cycling: 7.77± 1.47) and promoted an increase in the hardness in the DT for Elite Soft (Initial: 40.63± 1.07; Thermal cycling: 43.53± 1.03); hardness of Kooliner (DT: 8.76± 0.95; IT: 7.70± 1.62) and Elite Soft (DT: 42.75± 1.54; IT=39.30± 2.31) from the DT suffered an increase after the immersion in the beverages. The thermal cycling promoted color change only for Kooliner in the IT. Immersion in the beverages did not promote color change for Elite in both techniques. The control group of the DT of Kooliner showed a significant color change. Wine and coffee produced the greatest color change in the DT only for Elite Soft when compared to the other beverages. CONCLUSION: The three variation factors promoted alteration on hardness and color of the tested denture lining materials.
Resumo:
Pulp repair is a complex process whose mechanisms are not yet fully understood. The first immune cells to reach the damaged pulp are neutrophils that play an important role in releasing cytokines and in phagocytosis. The objective of this study was to analyze the effect of different pulp-capping materials on the secretion of interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) by migrating human neutrophils. Neutrophils were obtained from the blood of three healthy donors. The experimental groups were calcium hydroxide [Ca(OH)2], an adhesive system (Single Bond), and mineral trioxide aggregate (MTA). Untreated cells were used as control. Transwell chambers were used in performing the assays to mimic an in vivo situation of neutrophil chemotaxis. The pulp-capping materials were placed in the lower chamber and the human neutrophils, in the upper chamber. The cells were counted and the culture medium was assayed using ELISA kits for detecting and quantifying IL-1β and IL8. The data were compared by ANOVA followed by Tukey's test (p < 0.05). The secretion of IL-8 was significantly higher in all groups in comparison to the control group (p < 0.05). The adhesive system group showed higher IL-8 than the MTA group (p < 0.05). The secretion of IL-1β was significantly greater only in the MTA group (p < 0.001). It was concluded that only MTA is able to improve the secretion of IL-1β, and all materials tested increased IL-8 secretion. These results combined with all the other biological advantages of MTA indicate that it could be considered the material of choice for dental pulp capping.
Resumo:
This study investigated the influence of bioactive materials on the dentin surface whitened. MATERIAL AND METHODS: Three bovine teeth were shaped into three dentin wafers. Each wafer was then sectioned, into six dentin slices. One slice from each tooth was distributed into one of 6 groups: 1.CG = control group (distilled water); 2.WT = whitening treatment; 3.WT + MI Paste Plus, applied once a day; 4.WT + Relief ACP30, applied once a day for 30 mintes; 5.WT + Relief ACP60, applied once a day for 60 minutes; 6.WT + Biosilicate®, applied once a week. All groups were treated over 14 days. RESULTS: CG presented all dentinal tubules occluded by smear layer; WT group was observed all dentinal tubules opened. In the groups 3, 4 and 6, tubules were occluded. Group 5, dentinal tubules were completely occluded by mineral deposits. CONCLUSION: The use of bioactive materials immediately after whitening treatment can reduce or even avoid the demineralization effect of whitening and avoid exposing dentinal tubules.