19 resultados para Generalized ordinary differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a certain type of second-order neutral delay differential systems and we establish two results concerning the oscillation of solutions after the system undergoes controlled abrupt perturbations (called impulses). As a matter of fact, some particular non-impulsive cases of the system are oscillatory already. Thus, we are interested in finding adequate impulse controls under which our system remains oscillatory. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the scalar delayed differential equation epsilon(x) over dot(t) = -x(t) + f(x(t-1)), where epsilon > 0 and f verifies either df/dx > 0 or df/dx < 0 and some other conditions. We present theorems indicating that a generic initial condition with sign changes generates a solution with a transient time of order exp(c/epsilon), for some c > 0. We call it a metastable solution. During this transient a finite time span of the solution looks like that of a periodic function. It is remarkable that if df/dx > 0 then f must be odd or present some other very special symmetry in order to support metastable solutions, while this condition is absent in the case df/dx < 0. Explicit epsilon-asymptotics for the motion of zeroes of a solution and for the transient time regime are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We continue the investigation of the algebraic and topological structure of the algebra of Colombeau generalized functions with the aim of building up the algebraic basis for the theory of these functions. This was started in a previous work of Aragona and Juriaans, where the algebraic and topological structure of the Colombeau generalized numbers were studied. Here, among other important things, we determine completely the minimal primes of (K) over bar and introduce several invariants of the ideals of 9(Q). The main tools we use are the algebraic results obtained by Aragona and Juriaans and the theory of differential calculus on generalized manifolds developed by Aragona and co-workers. The main achievement of the differential calculus is that all classical objects, such as distributions, become Cl-functions. Our purpose is to build an independent and intrinsic theory for Colombeau generalized functions and place them in a wider context.