47 resultados para GENE-ENCODING TANNASE
Resumo:
Trichophyton rubrum is a dermatophyte responsible for the majority of human superficial mycoses. The functional expression of proteins important for the initial step and the maintenance of the infection process were identified previously in T. rubrum by subtraction suppression hybridization after growth in the presence of keratin. In this study, sequences similar to genes encoding the multidrug-resistance ATP-binding cassette (ABC) transporter, copper ATPase, the major facilitator superfamily and a permease were isolated, and used in Northern blots to monitor the expression of the genes, which were upregulated in the presence of keratin. A sequence identical to the TruMDR2 gene, encoding an ABC transporter in T rubrum, was isolated in these experiments, and examination of a T rubrum Delta TruMDR2 mutant showed a reduction in infecting activity, characterized by low growth on human nails compared with the wild-type strain. The high expression levels of transporter genes by T. rubrum in mimetic infection and the reduction in virulence of the Delta TruMDR2 mutant in a disease model in vitro suggest that transporters are involved in T. rubrum pathogenicity.
Resumo:
In the course of attempting to define the bone ""secretome"" using a signal-trap screening approach, we identified a gene encoding a small membrane protein novel to osteoblasts. Although previously identified in silico as ifitm5, no localization or functional studies had been undertaken on this gene. We characterized the expression patterns and localization of this gene in vitro and in vivo and assessed its role in matrix mineralization in vitro. The bone specificity and shown role in mineralization led us to rename the gene bone restricted ifitm-like protein (Bril). Bril encodes a 14.8-kDa 1.34 arnino acid protein with two transmembrane domains. Northern blot analysis showed bone-specific expression with no expression in other embryonic or adult tissues. In situ hybridization and immunohistochemistry in mouse embryos showed expression localized on the developing bone. Screening of cell lines showed Bril expression to be highest in osteoblasts, associated with the onset of matrix maturation/mineralization, suggesting a role in bone formation. Functional evidence of a role in mineralization was shown by adenovirus-mediated Brit overexpression and lentivirus-mediated Bril shRNA knockdown in vitro. Elevated Bril resulted in dose-dependent increases in mineralization in UMR106 and rat primary osteoblasts. Conversely, knockdown of Bril in MC3T3 osteoblasts resulted in reduced mineralization. Thus, we identified Bril as a novel osteoblast protein and showed a role in mineralization, possibly identifying a new regulatory pathway in bone formation.
Resumo:
Background Recent studies indicate an increased frequency of mutations in the gene encoding glucocerebrosidase (GBA), a deficiency of which causes Gaucher`s disease, among patients with Parkinson`s disease. We aimed to ascertain the frequency of GBA mutations in an ethnically diverse group of patients with Parkinson`s disease. Methods Sixteen centers participated in our international, collaborative study: five from the Americas, six from Europe, two from Israel, and three from Asia. Each center genotyped a standard DNA panel to permit comparison of the genotyping results across centers. Genotypes and phenotypic data from a total of 5691 patients with Parkinson`s disease (780 Ashkenazi Jews) and 4898 controls (387 Ashkenazi Jews) were analyzed, with multivariate logistic-regression models and the Mantel-Haenszel procedure used to estimate odds ratios across centers. Results All 16 centers could detect two GBA mutations, L444P and N370S. Among Ashkenazi Jewish subjects, either mutation was found in 15% of patients and 3% of controls, and among non-Ashkenazi Jewish subjects, either mutation was found in 3% of patients and less than 1% of controls. GBA was fully sequenced for 1883 non-Ashkenazi Jewish patients, and mutations were identified in 7%, showing that limited mutation screening can miss half the mutant alleles. The odds ratio for any GBA mutation in patients versus controls was 5.43 across centers. As compared with patients who did not carry a GBA mutation, those with a GBA mutation presented earlier with the disease, were more likely to have affected relatives, and were more likely to have atypical clinical manifestations. Conclusions Data collected from 16 centers demonstrate that there is a strong association between GBA mutations and Parkinson`s disease.
Resumo:
Background: The chromosome 17q21.31 microdeletion syndrome is a novel genomic disorder that has originally been identified using high resolution genome analyses in patients with unexplained mental retardation. Aim: We report the molecular and/or clinical characterisation of 22 individuals with the 17q21.31 microdeletion syndrome. Results: We estimate the prevalence of the syndrome to be 1 in 16 000 and show that it is highly underdiagnosed. Extensive clinical examination reveals that developmental delay, hypotonia, facial dysmorphisms including a long face, a tubular or pear-shaped nose and a bulbous nasal tip, and a friendly/amiable behaviour are the most characteristic features. Other clinically important features include epilepsy, heart defects and kidney/urologic anomalies. Using high resolution oligonucleotide arrays we narrow the 17q21.31 critical region to a 424 kb genomic segment (chr17: 41046729-41470954, hg17) encompassing at least six genes, among which is the gene encoding microtubule associated protein tau (MAPT). Mutation screening of MAPT in 122 individuals with a phenotype suggestive of 17q21.31 deletion carriers, but who do not carry the recurrent deletion, failed to identify any disease associated variants. In five deletion carriers we identify a <500 bp rearrangement hotspot at the proximal breakpoint contained within an L2 LINE motif and show that in every case examined the parent originating the deletion carries a common 900 kb 17q21.31 inversion polymorphism, indicating that this inversion is a necessary factor for deletion to occur (p< 10(25)). Conclusion: Our data establish the 17q21.31 microdeletion syndrome as a clinically and molecularly well recognisable genomic disorder.
Resumo:
The OTOF gene encoding otoferlin is associated with auditory neuropathy (AN), a type of non-syndromic deafness. We investigated the contribution of OTOF mutations to AN and to non-syndromic recessive deafness in Brazil. A test for the Q829X mutation was carried out on a sample of 342 unrelated individuals with non-syndromic hearing loss, but none presented this mutation. We selected 48 cases suggestive of autosomal recessive inheritance, plus four familial and seven isolated cases of AN, for genotyping of five microsatellite markers linked to the OTOF gene. The haplotype analysis showed compatibility with linkage in 11 families (including the four families with AN). Samples of the 11 probands from these families and from seven isolated cases of AN were selected for an exon-by-exon screening for mutations in the OTOF gene. Ten different pathogenic variants were detected, among which six are novel. Among the 52 pedigrees with autosomal recessive inheritance (including four familial cases of AN), mutations were identified in 4 (7.7%). Among the 11 probands with AN, seven had at least one pathogenic mutation in the OTOF gene. Mutations in the OTOF gene are frequent causes of AN in Brazil and our results confirm that they are spread worldwide. Journal of Human Genetics (2009) 54, 382-385; doi: 10.1038/jhg.2009.45; published online 22 May 2009
Resumo:
Synaptic modulation by activity-dependent changes constitutes a cellular mechanism for neuronal plasticity. However, it is not clear how the complete lack of neuronal signaling specifically affects elements involved in the communication between neurons. In the retina, it is now well established that both chemical and electrical synapses are essential to mediate the transmission of visual signaling triggered by the photoreceptors. In this study, we compared the expression of synaptic proteins in the retinas of wild-type (WT) vs. rd/rd mice, an animal model that displays inherited and specific ablation of photoreceptors caused by a mutation in the gene encoding the beta-subunit of rod cGMP-phosphodiesterase (Pde6b(rd1)). We specifically examined the expression of connexins (Cx), the proteins that form the gap junction channels of electrical synapses, in addition to synaptophysin and synapsin 1, which are involved in the release of neurotransmitters at chemical synapses. Our results revealed that Cx36 gene expression levels are lower in the retinas of rd/rd when compared with WT. Confocal analysis indicated that Cx36 immunolabeling almost disappeared in the outer plexiform layer without significant changes in protein distribution within the inner plexiform layer of rd/rd retinas. Likewise, synaptophysin expression remarkably decreased in the outer plexiform layer of rd/rd retinas, and this down-regulation was also associated with diminished transcript levels. Furthermore, we observed down-regulation of Cx57 gene expression in rd/rd retinas when compared with WT and also changes in protein distribution. Interestingly, Cx45 and synapsin I expression in rd/rd retinas showed no noticeable changes when compared with WT. Taken together, our results revealed that the loss of photoreceptors leads to decreased expression of some synaptic proteins. More importantly, this study provides evidence that neuronal activity regulates, but is not essential to maintain, the expression of synaptic elements. (c) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org
Resumo:
Germline mutations in CYBB, the human gene encoding the gp91(phox) subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This `experiment of nature` indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria.
Resumo:
Caulobacter crescentus is a free-living alphaproteobacterium that has 11 predicted LysR-type transcriptional regulators (LTTRs). Previously, a C. crescentus mutant strain with a mini-Tn5lacZ transposon inserted into a gene encoding an LTTR was isolated; this mutant was sensitive to cadmium. In this work, a mutant strain with a deletion was obtained, and the role of this LTTR (called CztR here) was evaluated. The transcriptional start site of this gene was determined by primer extension analysis, and its promoter was cloned in front of a lacZ reporter gene. beta-Galactosidase activity assays, performed with the wild-type and mutant strains, indicated that this gene is 2-fold induced when cells enter stationary phase and that it is negatively autoregulated. Moreover, this regulator is essential for the expression of the divergent cztA gene at stationary phase, in minimal medium, and in response to zinc depletion. This gene encodes a hypothetical protein containing 10 predicted transmembrane segments, and its expression pattern suggests that it encodes a putative zinc transporter. The cztR strain was also shown to be sensitive to superoxide (generated by paraquat) and to hydrogen peroxide but not to tert-butyl hydroperoxide. The expression of katG and ahpC, but not that of the superoxide dismutase genes, was increased in the cztR mutant. A model is proposed to explain how CztR binding to the divergent regulatory regions could activate cztA expression and repress its own transcription.
Resumo:
In unicellular eukaryotes, such as Saccharomyces cerevisiae, and in multicellular organisms, the replication origin is recognized by the heterohexamer origin recognition complex (ORC) containing six proteins, Orc1 to Orc6, while in members of the domain Archaea, the replication origin is recognized by just one protein, Orc1/Cdc6; the sequence of Orc1/Cdc6 is highly related to those of Orc1 and Cdc6. Similar to Archaea, trypanosomatid genomes contain only one gene encoding a protein named Orc1. Since trypanosome Orc1 is also homologous to Cdc6, in this study we named the Orc1 protein from trypanosomes Orc1/Cdc6. Here we show that the recombinant Orc1/Cdc6 from Trypanosoma cruzi (TcOrc1/Cdc6) and from Trypanosoma brucei (TbOrc1/Cdc6) present ATPase activity, typical of prereplication machinery components. Also, TcOrc1/Cdc6 and TbOrc1/Cdc6 replaced yeast Cdc6 but not Orc1 in a phenotypic complementation assay. The induction of Orc1/Cdc6 silencing by RNA interference in T. brucei resulted in enucleated cells, strongly suggesting the involvement of Orc1/Cdc6 in DNA replication. Orc1/Cdc6 is expressed during the entire cell cycle in the nuclei of trypanosomes, remaining associated with chromatin in all stages of the cell cycle. These results allowed us to conclude that Orc1/Cdc6 is indeed a member of the trypanosome prereplication machinery and point out that trypanosomes carry a prereplication machinery that is less complex than other eukaryotes and closer to archaea.
Resumo:
Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5` untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.
Resumo:
Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multifactorial and remain unclear. Here we examined DNA damage;p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly(93) --> Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2`-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Penicillium chrysogenum is widely used as an industrial antibiotic producer, in particular in the synthesis of g-lactam antibiotics such as penicillins and cephalosporins. In industrial processes, oxalic acid formation leads to reduced product yields. Moreover, precipitation of calcium oxalate complicates product recovery. We observed oxalate production in glucose-limited chemostat cultures of P. chrysogenum grown with or without addition of adipic acid, side-chain of the cephalosporin precursor adipoyl-6-aminopenicillinic acid (ad-6-APA). Oxalate accounted for up to 5% of the consumed carbon source. In filamentous fungi, oxaloacetate hydrolase (OAH; EC3.7.1.1) is generally responsible for oxalate production. The P. chrysogenum genome harbours four orthologs of the A. niger oahA gene. Chemostat-based transcriptome analyses revealed a significant correlation between extracellular oxalate titers and expression level of the genes Pc18g05100 and Pc22g24830. To assess their possible involvement in oxalate production, both genes were cloned in Saccharomyces cerevisiae, yeast that does not produce oxalate. Only the expression of Pc22g24830 led to production of oxalic acid in S. cerevisiae. Subsequent deletion of Pc22g28430 in P. chrysogenum led to complete elimination of oxalate production, whilst improving yields of the cephalosporin precursor ad-6-APA. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Posttraumatic stress disorder (PTSD) is a prevalent, disabling anxiety disorder marked by behavioral and physiologic alterations which commonly follows a chronic course. Exposure to a traumatic event constitutes a necessary, but not sufficient, factor. There is evidence from twin studies supporting a significant genetic predisposition to PTSD. However, the precise genetic loci still remain unclear. The objective of the present study was to identify, in a case-control study, whether the brain-derived neurotrophic factor (BDNF) val66met polymorphism (rs6265), the dopamine transporter (DAT1) three prime untranslated region (3`UTR) variable number of tandem repeats (VNTR), and the serotonin transporter (5-HTTPRL) short/long variants are associated with the development of PTSD in a group of victims of urban violence. All polymorphisms were genotyped in 65 PTSD patients as well as in 34 victims of violence without PTSD and in a community control group (n = 335). We did not find a statistical significant difference between the BDNF val66met and 5-HTTPRL polymorphism and the traumatic phenotype. However, a statistical association was found between DAT1 3`UTR VNTR nine repeats and PTSD (OR = 1.82; 95% CI, 1.20-2.76). This preliminary result confirms previous reports supporting a susceptibility role for allele 9 and PTSD.