22 resultados para GAUZE CATALYSTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carbon-supported binary Pt(3)Sn catalyst has been prepared using a modified polymeric precursor method under controlled synthesis conditions This material was characterized using X-ray diffraction (XRD). and the results indicate that 23% (of a possible 25%) of Sn is alloyed with Pt, forming a dominant Pt(3)Sn phase. Transmission election microscopy (TEM) shows good dispersion of the electrocatalyst and small particle sizes (3 6 nm +/- 1 nm) The polarization curves for a direct ethanol fuel cell using Pt(3)Sn/C as the anode demonstrated Improved performance compared to that of a PtSn/C E-TEK. especially in the intrinsic resistance-controlled and mass transfer regions. This behavior is probably associated with the Pt(3)Sn phase. The maximum power density for the Pt(3)Sn/C electrocatalyst (58 mW cm(-2)) is nearly twice that of a PtSn/C E-TEK electrocatalyst (33 mW cm(-2)) This behavior is attributed to the presence of a mixed Pt(9)Sn and Pt(3)Sn alloy phase in the commercial catalysts (C) 2009 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni catalysts supported on gamma-Al(2)O(3) and Mg(Al)O were prepared with and without Rh as a promoter and tested in the reforming of methane in the presence of excess methane, simulating a model biogas. The effects of adding synthetic air on the methane conversion and the formation of carbon were assessed. The catalysts were characterized by X-ray spectroscopy (EDS), surface area (BET), X-ray diffraction (XRD), Temperature-programmed reduction (TPR), X-ray absorption near-edge structure (XANES) and XPD. The results showed that in catalysts without Rh, the Ni interacts strongly with the supports, showing high reduction temperatures in TPR tests. The addition of Rh increased the amount of reducible Ni and facilitated the reduction of the species interacting strongly with the support. In the catalytic tests, the samples promoted with Rh suffered higher carbon deposition. The in situ XPD suggested that on the support gamma-Al(2)O(3), the presence of Rh probably led to a segregation of Ni species with time on stream, leading to carbon deposition. On the support MgAlO, the presence of Rh improved the dispersion of Ni, by reducing the Ni(0) crystallite size, suggesting that in this case the carbon deposition was due to a favoring of CH(4) decomposition by Rh. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NiO/Al(2)O(3) catalyst precursors were prepared by simultaneous precipitation, in a Ni:Al molar ratio of 3:1, promoted with Mo oxide (0.05, 0.5, 1.0 and 2.0 wt%). The solids were characterized by adsorption of N(2), XRD, TPR, Raman spectroscopy and XPS, then activated by H(2) reduction and tested for the catalytic activity in methane steam reforming. The characterization results showed the presence of NiO and Ni(2)AlO(4) in the bulk and Ni(2)AlO(4) and/or Ni(2)O(3) and MoO(4)(-2) at the surface of the samples. In the catalytic tests, high stability was observed with a reaction feed of 4:1 steam/methane. However, at a steam/methane ratio of 2: 1, only the catalyst with 0.05% Mo remained stable throughout the 500 min of the test. The addition of Mo to Ni catalysts may have a synergistic effect, probably as a result of electron transfer from the molybdenum to the nickel, increasing the electron density of the catalytic site and hence the catalytic activity. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZrO(2), gamma-Al(2)O(3) and ZrO(2)/gamma-Al(2)O(3)-supported copper catalysts have been prepared, each with three different copper loads (1, 2 and 5 wt%), by the impregnation method. The catalysts were characterized by nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR) with H(2), Raman spectroscopy and electronic paramagnetic resonance (EPR). The reduction of NO by CO was studied in a fixed-bed reactor packed with these catalysts and fed with a mixture of 1% CO and 1% NO in helium. The catalyst with 5 wt% copper supported on the ZrO(2)/gamma-Al(2)O(3) matrix achieved 80% reduction of NO. Approximately the same rate of conversion was obtained on the catalyst with 2 wt% copper on ZrO(2). Characterization of these catalysts indicated that the active copper species for the reduction of NO are those in direct contact with the oxygen vacancies found in ZrO(2). (C) 2009 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported nickel catalysts of composition Ni/Y(2)O(3)-ZrO(2) were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y(2)O(3)-ZrO(2) in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO(2) conversion of 61% on the 5NiYZ catalyst at 800 degrees C, representing a better response than for the catalyst of the same composition prepared by wet impregnation. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polynorbornadiene and polynorbornene were synthesized via ring opening metathesis polymerization (ROMP) with [RuCl(2)(PPh(3))(2)(amine)] as catalyst precursors, amine = piperidine (1) or perhydroazepine (2) in the presence of 5 mu L of ethyl diazoacetate (EDA) ([monomer]/[Ru] = 5000; 40 degrees C with 1; 25 degrees C with 2). The effects of the solvent volume (2-8 mL of CHCl(3)) reaction time (5-120 min) and atmosphere type (argon and air) on the yields were investigated to observe the behavior of the two different precursors. Quantitative yields were obtained for 60 or 120 min regardless of the starting volumes, either in argon or air, with both Ru species. However, low yields were obtained for short times (5-30 min) when the reactions are performed with large volumes (6-8 mL). In argon, the yields were larger with 2, associated to a faster propagation reaction controlled by the Ru active species. In air, the yields were larger with 1, associated to a higher resistance to O(2) of the starting and propagating Ru species. The different activities between 1 and 2 are discussed considering the steric hindrance and electronic characteristics of the amines such as ancillary ligands and their arrangements with PPh(3) and Cl(-) ions in the metal centers. (c) 2009 Elsevier B.V. All rights reserved.