19 resultados para GAMMA-IRRADIATION
Resumo:
The objective of the present study was to evaluate the effects of different gamma radiation doses on the growth of Alternaria alternata and on the production of toxins alternariol (AOH), and alternariol monomethyl ether (AME) in sunflower seed samples. After irradiation with 2, 5 and 7 kGy, the spore mass was resuspended in sterile distilled water and the suspension was inoculated into sunflower seeds. The number of colony-forming units per gram (CFU/g) was determined after culture on Dichloran Rose Bengal Chloramphenicol and Dichloran Chloramphenicol Malt Extract Agar. The presence of AOH and AME was investigated by liquid chromatography coupled to mass spectrometry. The radiation doses used resulted in a reduction of the number of A. alternata CFU/g and of AOH and AME levels when compared to the nonirradiated control group. Maximum reduction of the fungus (98.5%) and toxins (99.9%) was observed at a dose of 7 and 5 kGy, respectively. Under the present conditions, gamma radiation was found to be an alternative for the control of A. alternata and, consequently, of AOH and AME production in sunflower seeds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to evaluate the effects of different gamma-radiation doses on the growth of Alternaria alternata in artificially inoculated cereal samples. Seeds and grains were divided into four groups: Control Group (not irradiated), and Groups 1, 2 and 3, inoculated with an A. alternata spore suspension (1 x 10(6) spores/mL) and exposed to 2, 5 and 10 kGy, respectively. Serial dilutions of the samples were prepared and seeded on DRBC (dichloran rose bengal chloramphenicol agar) and DCMA (dichloran chloramphenicol malt extract agar) media, after which the number of colony-forming units per gram was determined in each group. In addition, fungal morphology after irradiation was analyzed by scanning electron microscopy (SEM). The results showed that ionizing radiation at a dose of 5 kGy was effective in reducing the growth of A. alternata. However, a dose of 10 kGy was necessary to inhibit fungal growth completely. SEM made it possible to visualize structural alterations induced by the different gamma-radiation doses used. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we report results of a quantitative analysis of the effects of neutrons on DNA, and, specifically, the production of simple and double breaks of plasmid DNA in aqueous solutions with different concentrations of free-radical scavengers. The radiation damage to DNA was evaluated by electrophoresis through agarose gels. The neutron and gamma doses were measured separately with thermoluminescent detectors. In this work, we have also demonstrated usefulness of a new system for positioning and removing samples in channel BH#3 of the IEA-R1 reactor at the Instituto de Pesquisas Energeticas e Nucleares (Brazil) without necessity of interrupting the reactor operation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this paper is to report the sensitization of the TL peak appearing at 270 degrees C in the glow curve of natural quartz by using the combined effect of heat-treatments and irradiation with high gamma doses. For this, thirty discs with 6 x 1 mm(2) were prepared from plates parallell to a rhombolledral crystal face. The specimens were separated into four lots according to its TL read out between 160 and 320 degrees C. One lot was submitted to gamma doses of Co-60 radiation starting at 2 kGy and going up until a cumulative dose of 25 kGy. The other three lots were initially heal-treated at 500, 800 and 1000 degrees C and then irradiated with a single dose of 25kGy. The TL response of each lot was determined as a function of test-doses ranging from 0.1 to 30 mGy. As a result, it was observed that heat-treatments themselves did not produce the strong peak at 270 degrees C that was observed after the administration of high gamma doses. This peak is associated with the optical absorption band appearing at 470 rim which is due to the formation of [AlO4]degrees acting as electron-hole recombination centers. The formation of the 270 degrees C peak was preliminary analyzed in relation to aluminum- and oxygen-vacancy-related centers found in crystalline quartz. (C) 2008 Elsevier Ltd. All rights reserved.