24 resultados para Formaldehyde
Resumo:
Brazilian sugarcane spirits were analyzed to elucidate similarities and dissimilarities by principal component analysis. Nine aldehydes, six alcohols, and six metal cations were identified and quantified. Isobutanol (LD 202.9 mu gL-1), butiraldehyde (0.08-0.5 mu gL-1), ethanol (39-47% v/v), and copper (371-6068 mu gL-1) showed marked similarities, but the concentration levels of n-butanol (1.6-7.3 mu gL-1), sec-butanol (LD 89 mu gL-1), formaldehyde (0.1-0.74 mu gL-1), valeraldehyde (0.04-0.31 mu gL-1), iron (8.6-139.1 mu gL-1), and magnesium (LD 1149 mu gL-1) exhibited differences from samples.
Resumo:
Electrochemical decolourisation of Reactive Orange 16 was carried out in an electrochemical flow-cell, using as working electrodes a Pt thin film deposited on a Ti substrate (Pt/Ti) prepared by the Pechini method and a pure platinum (Pt) foil. Using the Pt/Ti electrodes better results for dye decolourisation were obtained under milder conditions than those used for pure Pt. For the Pt electrode, colour removal of 93 % (lambda = 493 nm) was obtained after 60 min, at 2.2 V vs. RHE, using 0.017 mol L(-1) NaCl + 0.5 mol L(-1) H(2)SO(4) solution. For the Pt/Ti electrode there was better colour removal, 98%, than for the Pt electrode. Moreover, we used 0.017 mol L(-1) NaCl solution and the applied potential was 1.8 V. Under this condition after 15 min of electrolysis, more than 80% of colour was removed. The rate reaction constant, assuming a first order reaction, was 0.024 min(-1) and 0.069 min(-1), for Pt and Pt/Ti electrodes, respectively.
Resumo:
Resol type resins were prepared in alkaline conditions (potassium hydroxide or potassium carbonate) using furfural obtained by acid hydrolysis of abundant renewable resources from agricultural and forestry waste residues. The structures of the resins were fully determined by H-1, C-13, and 2D NMR spectrometries with the help of four models compounds synthesized specially for this study. MALDI-Tof mass spectrometry experiments indicated that a majority of linear oligomers and a minority of cyclic ones constituted them. Composites were prepared with furfural-phenol resins and sisal fibers. These fibers were chosen mainly because they came from natural lignocellulosic material and they presented excellent mechanical microscopy images indicated that the composites displayed excellent adhesion between resin and fibers. Impact strength measurement showed that mild conditions were more suitable to prepare thermosets. Nevertheless, mild conditions induced a high-diffusion coefficient for water absorption by composites. Composites with good properties could be prepared using high proportion of materials obtained from biomass without formaldehyde. (c) 2008 Wiley Periodicals, Inc.
Resumo:
Electrochemical systems are ideal working-horses for studying oscillatory dynamics. Experimentally obtained time series, however, are usually associated with a spontaneous drift in some uncontrollable parameter that triggers transitions among different oscillatory patterns, despite the fact that all controllable parameters are kept constant. Herein we present an empirical method to stabilize experimental potential time series. The method consists of applying a negative galvanodynamic sweep to compensate the spontaneous drift and was tested for the oscillatory electro-oxidation of methanol on platinum. For a wide range of applied currents, the base system presents spontaneous transitions from quasi-harmonic to mixed mode oscillations. Temporal patterns were stabilized by galvanodynamic sweeps at different rates. The procedure resulted in a considerable increase in the number of oscillatory cycles from 5 to 20 times, depending on the specific temporal pattern. The spontaneous drift has been associated with uncompensated oscillations, in which the coverage of some adsorbed species are not reestablished after one cycle; i.e., there is a net accumulation and/or depletion of adsorbed species during oscillations. We interpreted the rate of the galvanodynamic sweep in terms of the time scales of the poisoning processes that underlies the uncompensated oscillations and thus the spontaneous slow drift.
Resumo:
In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107: 612-621. (C) 2010 Wiley Periodicals, Inc.
Resumo:
Lignocellulosic materials can significantly contribute to the development of biobased composites. In this work, glyoxal-phenolic resins for composites were prepared using glyoxal, which is a dialdehyde obtained from several natural resources. The resins were characterized by (1)H, (13)C, (2)D, and (31)P NMR spectroscopies. Resorcinol (10%) was used as an accelerator for curing the glyoxal-phenol resins in order to obtain the thermosets. The impact-strength measurement showed that regardless of the cure cycle used, the reinforcement of thermosets by 30% (w/w) sisal fibers improved the impact strength by one order of magnitude. Curing with cycle 1 (150 degrees C) induced a high diffusion coefficient for water absorption in composites, due to less interaction between the sisal fibers and water. The composites cured with cycle 2 (180 degrees C) had less glyoxal resin coverage of the cellulosic fibers, as observed by images of the fractured interface observed by SEM. This study shows that biobased composites with good properties can be prepared using a high proportion of materials obtained from natural resources. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
To identify chemical descriptors to distinguish Cuban from non-Cuban rums, analyses of 44 samples of rum from 15 different countries are described. To provide the chemical descriptors, analyses of the the mineral fraction, phenolic compounds, caramel, alcohols, acetic acid, ethyl acetate, ketones, and aldehydes were carried out. The analytical data were treated through the following chemometric methods: principal component analysis (PCA), partial least square-discriminate analysis (PLS-DA), and linear discriminate analysis (LDA). These analyses indicated 23 analytes as relevant chemical descriptors for the separation of rums into two distinct groups. The possibility of clustering the rum samples investigated through PCA analysis led to an accumulative percentage of 70.4% in the first three principal components, and isoamyl alcohol, n-propyl alcohol, copper, iron, 2-furfuraldehyde (furfuraldehyde), phenylmethanal (benzaldehyde), epicatechin, and vanillin were used as chemical descriptors. By applying the PLS-DA technique to the whole set of analytical data, the following analytes have been selected as descriptors: acetone, sec-butyl alcohol, isobutyl alcohol, ethyl acetate, methanol, isoamyl alcohol, magnesium, sodium, lead, iron, manganese, copper, zinc, 4-hydroxy3,5-dimethoxybenzaldehyde (syringaldehyde), methaldehyde (formaldehyde), 5-hydroxymethyl-2furfuraldehyde (5-HMF), acetalclehyde, 2-furfuraldehyde, 2-butenal (crotonaldehyde), n-pentanal (valeraldehyde), iso-pentanal (isovaleraldehyde), benzaldehyde, 2,3-butanodione monoxime, acetylacetone, epicatechin, and vanillin. By applying the LIDA technique, a model was developed, and the following analytes were selected as descriptors: ethyl acetate, sec-butyl alcohol, n-propyl alcohol, n-butyl alcohol, isoamyl alcohol, isobutyl alcohol, caramel, catechin, vanillin, epicatechin, manganese, acetalclehyde, 4-hydroxy-3-methoxybenzoic acid, 2-butenal, 4-hydroxy-3,5-dimethoxybenzoic acid, cyclopentanone, acetone, lead, zinc, calcium, barium, strontium, and sodium. This model allowed the discrimination of Cuban rums from the others with 88.2% accuracy.
Resumo:
Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).
Resumo:
The oscillatory electro-oxidation of methanol was studied by means of in situ infrared (IR) spectroscopy in the attenuated total reflection (ATR) configuration using a platinum film on a Si prism as working electrode. The surface-enhanced infrared absorption (SEIRA) effect considerably improves the spectroscopic resolution, allowing at following the coverage of some adsorbing species during the galvanostatic oscillations. Carbon monoxide was the main adsorbed specie observed in the induction period and within the oscillatory regime. The system was investigated at two distinct time-scales and its dynamics characterized accordingly. During the induction period the main transformation observed as the system move through the phase space towards the oscillatory region was the decrease of the coverage of adsorbed carbon, coupled to the increase of the electrode potential. Similar transition characterizes the evolution within the oscillatory region, but at a considerably slower rate. Experiments with higher time resolution revealed that the electrode potential oscillates in-phase with the frequency of the linearly adsorbed CO vibration and that the amount of adsorbed CO oscillates with small amplitude. Adsorbed formate was found to play, if any, a very small role. Results are discussed and compared with other systems. (C) 2010 Elsevier B.V. All rights reserved.