28 resultados para Flexor Muscles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burgi K, Cavalleri MT, Alves AS, Britto LRG, Antunes VR, Michelini LC. Tyrosine hydroxylase immunoreactivity as indicator of sympathetic activity: simultaneous evaluation in different tissues of hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R264-R271, 2011. First published December 9, 2010; doi: 10.1152/ajpregu.00687.2009.-Vasomotor control by the sympathetic nervous system presents substantial heterogeneity within different tissues, providing appropriate homeostatic responses to maintain basal/stimulated cardiovascular function both at normal and pathological conditions. The availability of a reproducible technique for simultaneous measurement of sympathetic drive to different tissues is of great interest to uncover regional patterns of sympathetic nerve activity (SNA). We propose the association of tyrosine hydroxylase immunoreactivity (THir) with image analysis to quantify norepinephrine (NE) content within nerve terminals in arteries/arterioles as a good index for regional sympathetic outflow. THir was measured in fixed arterioles of kidney, heart, and skeletal muscle of WistarKyoto rats (WKY) and spontaneously hypertensive rats (SHR) (123 +/- 2 and 181 +/- 4 mmHg, 300 +/- 8 and 352 +/- 8 beats/min, respectively). There was a differential THir distribution in both groups: higher THir was observed in the kidney and skeletal muscle (similar to 3-4-fold vs. heart arterioles) of WKY; in SHR, THir was increased in the kidney and heart (2.4- and 5.3-fold vs. WKY, respectively) with no change in the skeletal muscle arterioles. Observed THir changes were confirmed by either: 1) determination of NE content (high-performance liquid chromatography) in fresh tissues (SHR vs. WKY): +34% and +17% in kidney and heart, respectively, with no change in the skeletal muscle; 2) direct recording of renal (RSNA) and lumbar SNA (LSNA) in anesthetized rats, showing increased RSNA but unchanged LSNA in SHR vs. WKY. THir in skeletal muscle arterioles, NE content in femoral artery, and LSNA were simultaneously reduced by exercise training in the WKY group. Results indicate that THir is a valuable technique to simultaneously evaluate regional patterns of sympathetic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protective effect of short-term creatine supplementation (CrS) upon markers of strenuous contractile activity-induced damage in human and rat skeletal muscles was investigated. Eight Ironman triathletes were randomized into the placebo (Pl; n = 4) and creatine-supplemented (CrS; n = 4) groups. Five days prior to the Ironman competition, the CrS group received creatine monohydrate (20 g day(-1)) plus maltodextrin (50 g) divided in two equal doses. The Pl group received maltodextrin (50 g day(-1)) only. The effect of CrS (5 g day(-1)/kg body weight for 5 days) was also evaluated in a protocol of strenuous contractile activity induced by electrical stimulation in rats. Blood samples were collected before and 36 and 60 h after the competition and were used to determine plasma activities of creatine kinase (CK), lactate dehydrogenase (LDH), aldolase (ALD), glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), and C-reactive protein (CRP) level. In rats, plasma activities of CK and LDH, muscle vascular permeability (MVP) using Evans blue dye, muscle force and fatigue were evaluated. Activities of CK, ALD, LDH, GOT, GTP, and levels of CRP were increased in the Pl group after the competition as compared to basal values. CrS decreased plasma activities of CK, LDH, and ALD, and prevented the rise of GOT and GPT plasma activities. In rats, CrS delayed the fatigue, preserved the force, and prevented the rise of LDH and CK plasma activities and MVP in the gastrocnemius muscle. CrS presented a protective effect on muscle injury induced by strenuous contractile activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose transporter 4 (GLUT4) expression in adipose tissue decreases during fasting. In skeletal muscle, we hypothesized that GLUT4 expression might be maintained in a beta-adrenergic-dependent way to ensure energy disposal for contractile function. Herein we investigate beta-blockade or beta-stimulation effects on GLUT4 expression in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscles of fasted rats. Fasting increased GLUT4 mRNA in soleus (24%) and EDL (40%) but the protein content increased only in soleus (30%). beta 1-beta 2-, and beta 1-beta 2-beta 3-blockade decreased (20-30%) GLUT4 mRNA content in both muscles, although GLUT4 protein decreased only in EDL. When mRNA and GLUT4 protein regulations were discrepant, changes in the mRNA poly(A) tail length were detected, indicating a posttranscriptional modulation of gene expression. These results show that beta-adrenergic activity regulates GLUT4 gene expression in skeletal muscle during fasting, highlighting its participation in preservation of GLUT4 protein in glycolytic muscle. Muscle Nerve 40: 847-854, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non-esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h-fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase-3 (GSK-3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK-3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin-stimulated phosphorylation of Akt and GSK-3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK-3 phosphorylation and glycogen content are decreased in liver and skeletal Muscles, but in the heart it remain unchanged (Akt and GSK-3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The purpose of this study was to evaluate the effect of exhaustive exercise on proteins associated with muscle damage and regeneration, including IL-2, IL-4 and MyoD, in extensor digitorum longus (EDL) and soleus muscles and mesenteric (MEAT) and retroperitoneal adipose tissues (RPAT). Methods: Rats were killed by decapitation immediately (E0 group, n = 6), 2 (E2 group, n = 6) or 6 (E6 group, n = 6) hours after the exhaustion protocol, which consisted of running on a treadmill at approximately 70% of VO(2max) for fifty minutes and then at an elevated rate that increased at one m/min every minute, until exhaustion. Results: The control group (C group, n = 6) was not subjected to exercise. IL-2 protein expression increased at E0 in the soleus and EDL; at E2, this cytokine returned to control levels in both tissues. In the soleus, IL-2 protein expression was lower than that in the control at E6. IL-4 protein levels increased in EDL at E6, but the opposite result was observed in the soleus. MyoD expression increased at E6 in EDL. Conclusion: Exhaustive exercise was unable to modify IL-2 and IL-4 levels in MEAT and RPAT. The results show that exhaustive exercise has different effects depending on which muscle is analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested if modulation in mRNA expression of cyclooxygenase isoforms (COX-1 and COX-2) can be related to protective effects of phototherapy in skeletal muscle. Thirty male Wistar rats were divided into five groups receiving either one of four laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation (904 nm, 15 mW average power) was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions. Immediately after sixth contraction, blood samples were collected to evaluate creatine kinase activity and muscles were dissected and frozen in liquid nitrogen to evaluate mRNA expression of COX-1 and COX-2. The 1.0 and 3.0 J groups showed significant enhancement (P < 0.01) in total work performed in six tetanic contractions compared with control group. All laser groups, except the 3.0 J group, presented significantly lower post-exercise CK activity than control group. Additionally, 1.0 J group showed increased COX-1 and decreased COX-2 mRNA expression compared with control group and 0.1, 0.3 and 3.0 J laser groups (P < 0.01). We conclude that pre-exercise infrared laser irradiation with dose of 1.0 J enhances skeletal muscle performance and decreases post-exercise skeletal muscle damage and inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years, phototherapy has becoming a promising tool to improve skeletal muscle recovery after exercise, however, it was not compared with other modalities commonly used with this aim. In the present study we compared the short-term effects of cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) with placebo LEDT on biochemical markers related to skeletal muscle recovery after high-intensity exercise. A randomized double-blind placebo-controlled crossover trial was performed with six male young futsal athletes. They were treated with CWIT (5A degrees C of temperature [SD +/- 1A degrees]), active LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW of output power, 30 s of irradiation time per point, and 41.7 J of total energy irradiated per point, total of ten points irradiated) or an identical placebo LEDT 5 min after each of three Wingate cycle tests. Pre-exercise, post-exercise, and post-treatment measurements were taken of blood lactate levels, creatine kinase (CK) activity, and C-reactive protein (CRP) levels. There were no significant differences in the work performed during the three Wingate tests (p > 0.05). All biochemical parameters increased from baseline values (p < 0.05) after the three exercise tests, but only active LEDT decreased blood lactate levels (p = 0.0065) and CK activity (p = 0.0044) significantly after treatment. There were no significant differences in CRP values after treatments. We concluded that treating the leg muscles with LEDT 5 min after the Wingate cycle test seemed to inhibit the expected post-exercise increase in blood lactate levels and CK activity. This suggests that LEDT has better potential than 5 min of CWIT for improving short-term post-exercise recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to evaluate the influence of the undermining of the subcutaneous tissue on the tension of the abdominal wall, after the components separation of the abdominal muscles. Twenty adult cadavers were studied. The resistance of the medial advancement of both anterior and posterior recti sheaths was represented by the traction index and measured in 2 levels-3 cm above and 2 cm below the umbilicus. Traction indices were compared in the following 3 consecutive dissection situations: (1) after the subcutaneous tissue undermining laterally to the semilunaris line; (2) after the dissection of the rectus muscle from its posterior sheath associated with the release of the external oblique muscle; (3) after the subcutaneous tissue undermining laterally to the anterior axillary line. Friedman and Spearman tests were used to compare the results. There was no statistical significant difference between the subcutaneous tissue undermining laterally to the semilunaris line and that laterally to the anterior axillary line, when associated with the musculoaponeurotic dissections. In conclusion, limited subcutaneous undermining does not influence the tension of closure of the musculoaponeurotic layer after the components separation technique in cadavers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Reductions in plasma glutamine are observed after prolonged exercise. Three hypotheses can explain such a decrease: (i) high demand by the liver and kidney; (ii) impaired release from muscles; and (iii) decreased synthesis in skeletal muscle. The present study investigated the effects of exercise on glutamine synthesis and transport in rat skeletal muscle. Rats were divided into three groups: (i) sedentary (SED; n = 12); (ii) rats killed 1 h after the last exercise bout (EX-1; n = 15); and (iii) rats killed 24 h after the last exercise bout (EX-24; n = 15). Rats in the trained groups swam 1 h/day, 5 days/week for 6 weeks with a load equivalent to 5.5% of their bodyweight. Plasma glutamine and insulin were lower and corticosterone was higher in EX-1 compared with SED rats (P < 0.05 and P < 0.01, respectively). Twenty-four hours after exercise (EX-24), plasma glutamine was restored to levels seen in SED rats, whereas insulin levels were higher (P < 0.001) and costicosterone levels were lower (P < 0.01) than in EX-1. In the soleus, ammonia levels were lower in EX-1 than in SED rats (P < 0.001). After 24 h, glutamine, glutamate and ammonia levels were lower in EX-24 than in SED and EX-1 rats (P < 0.001). Soleus glutamine synthetase (GS) activity was increased in EX-1 and was decreased in EX-24 compared with SED rats (both P < 0.001). The decrease in plasma glutamine concentration in EX-1 is not mediated by GS or glutamine transport in skeletal muscle. However, 24 h after exercise, lower GS may contribute to the decrease in glutamine concentration in muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eukaryotic translation initiation factor 5A (eIF5A) contains a special amino acid residue named hypusine that is required for its activity, being produced by a post-translational modification using spermidine as substrate. Stem cells from rat skeletal muscles (satellite cells) were submitted to differentiation and an increase of eIF5A gene expression was observed. Higher content of eIF5A protein was found in satellite cells on differentiation in comparison to non-differentiated satellite cells and skeletal muscle. The treatment with NI-guanyl- 1,7-diaminoheptane (GC7), a hypusination inhibitor, reversibly abolished the differentiation process. In association with the differentiation blockage, an increase of glucose consumption and lactate production and a decrease of glucose and palmitic acid oxidation were observed. A reduction in cell proliferation and protein synthesis was also observed. L-Arginine, a spermidine precursor and partial suppressor of muscle dystrophic phenotype, partially abolished the GC7 inhibitory effect on satellite cell differentiation. These results reveal a new physiological role for eIF5A and contribute to elucidate the molecular mechanisms involved in muscle regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was the force-displacement response analysis of the masticatory process in a dried human skull by Double-Exposure Photorefractive Holographic Interferometry Technique (2E-PRHI). The load concentration and dissipation of the forces from dried human skull were analysed at applied loading stands as a Simulation of Isolated Contraction (SIC) of some mastication muscles. The 2EHI and Fringe Analysis Method were used to obtain the quantitative results of this force-displacement response. These results document quantitatively the real biomechanical response from dried human skull under applied loading and it can be used for complementary study by finite element model and others analysis type. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ruthenium complex,trans-[Ru(Bz)(NH3)(4)SO2](CF3SO3)(2) 1, Bz = benznidazole (N-benzyl-2-(2-nitro-1H-imidazol-1-yl)acetamide), is more hydrosoluble and more active (IC50try/1 h = 79 +/- 3 mu M) than free benznidazole 2 (IC50try/1 h > 1 mM). 1 also exhibits low acute toxicity in vitro (IC50macrophages > 1 mM) and in vivo (400 mu mol/kg < LD50 < 600 mu mol/kg) and the formation of hydroxylamine is more favorable in 1 than in 2 by 9.6 kcal/mol. In murine acute models of Chagas` disease, 1 was more active than 2 even when only one dose was administrated. Moreover, 1 at a thousand-fold smaller concentration than the considered optimal dose for 2 (385 mu mol/kg/day = 100 mg/kg/day), proved to be sufficient to protect all infected mice, eliminating the amastigotes in their hearts and skeletal muscles as observed in H&E micrographics.