48 resultados para Fatty acid metabolism
Resumo:
The effects of acai pulp addition and different probiotic bacteria on the fatty acid profile of stirred yoghurt were examined. Skim milk was divided into two groups: one containing acai pulp and another without the fruit. Batches were inoculated with yoghurt starter culture and divided into five groups according to probiotic addition. Counts of viable microorganisms were measured at days 1, 14 and 28 of cold storage. Fatty acid profile was determined by gas chromatography at day 1. Acai pulp favoured an increase in Lactobacillus acidophilus L10, Bifidobacterium animalis ssp. lactis Bl04 and Bifidobacterium longum Bl05 counts at the end of 4 weeks of cold storage. This study demonstrated that acai pulp addition increased monounsaturated and polyunsaturated fatty acid contents in probiotic yoghurt and enhanced the production of cc-linolenic and conjugated linoleic acids during fermentation of skim milk prepared with B. animalis ssp. lactis Bl04 and B94 strains. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Laboratory Investigation (2011) 91, 232-240; doi:10.1038/labinvest.2010.157; published online 30 August 2010
Resumo:
We investigated the effects of dietary trans fatty acids, PUFA, and SEA on body and liver fat content, liver histology, and mRNA of enzymes involved in fatty acid metabolism. LDL receptor knockout weaning male mice were fed for 16 wk with diets containing 40% energy as either trans fatty acids (TRANS), PUFA, or SEA. Afterwards, subcutaneous and epididymal fat were weighed and histological markers of nonalcoholic fatty liver disease (NAFLD) were assessed according to the Histological Scoring System for NAFLD. PPAR alpha, PPAR gamma, microsomal triglyceride transfer protein (MTP), carnitine palmitoyl transferase 1 (CPT-1), and sterol regulatory element binding protein-1c (SREBP-1c) mRNA were measured by quantitative RT-PCR. Food intake was similar in the 3 groups, although mice fed the TRANS diet gained less weight than those receiving the PUFA diet. Compared with the PUFA- and SEA-fed mice, TRANS-fed mice had greater plasma total cholesterol (TC) and triglyceride (TG) concentrations, less epididymal and subcutaneous fat, larger livers with nonalcoholic steatohepatitis (NASH)-like lesions, and greater liver TC and TG concentrations. Macrosteatosis in TRANS-fed mice was associated with a higher homeostasis model assessment of insulin resistance (HOMA(IR)) index and upregulated mRNA related to hepatic fatty acid synthesis (SREBP-1 c and PPAR gamma) and to downregulated MTP mRNA. Diet consumption did not alter hepatic mRNA related to fatty acid oxidation (PPAR alpha and CPT-1). In conclusion, compared with PUFA- and SFA-fed mice, TRANS-fed mice had less adiposity, impaired glucose tolerance characterized by greater HOMA(IR) index, and NASH-like lesions due to greater hepatic lipogenesis. These results demonstrate the role of trans fatty acid intake on the development of key features of metabolic syndrome. J. Nutr. 140: 1127-1132, 2010.
Resumo:
Free fatty acids (FFAs) have been shown to produce alteration of heart rate variability (HRV) in healthy and diabetic individuals. Changes in HRV have been described in septic patients and in those with hyperglycemia and elevated plasma FFA levels. We studied if sepsis-induced heart damage and HRV alteration are associated with plasma FFA levels in patients. Thirty-one patients with sepsis were included. The patients were divided into two groups: survivors(n = 12) and nonsurvivors (n = 19). The following associations were investigated: (a) troponin I elevation and HRV reduction and (b) clinical evolution and HRV index, plasma troponin, and plasma FFA levels. Initial measurements of C-reactive protein and gravity Acute Physiology and Chronic Health Evaluation scores were similar in both groups. Overall, an increase in plasma troponin level was related to increased mortality risk. From the first day of study, the nonsurvivor group presented a reduced left ventricular stroke work systolic index and a reduced low frequency (LF) that is one of HRV indexes. The correlation coefficient for LF values and troponin was r(2) = 0.75 (P < 0.05). All patients presented elevated plasma FFA levels on the first day of the study (5.11 +/- 0.53 mg/mL), and this elevation was even greater in the nonsurvivor group compared with the survivors (6.88 +/- 0.13 vs. 3.85 +/- 0.48 mg/mL, respectively; P < 0.05). Cardiac damage was confirmed by measurement of plasma troponin I and histological analysis. Heart dysfunction was determined by left ventricular stroke work systolic index and HRV index in nonsurvivor patients. A relationship was found between plasma FFA levels, LFnu index, troponin levels, and histological changes. Plasma FFA levels emerged as possible cause of heart damage in sepsis.
Resumo:
Le taux de triacylglycerol (TAG) qui s`accumule dans le tissu adipeux depend de 2 mecanismes opposes : la lipogenese et la lipolyse. Nous avons montre anterieurement que le poids des lipides du tissu adipeux de l`epididyme (EPI) de meme que leur taux augmentent chez les rats en croissance soumis a une diete hypoproteique hyperglucidique (HPHG) pendant 15 jours. La presente etude a eu pour but d`examiner les voies impliquees dans la lipogenese et la lipolyse qui regulent l`accumulation des lipides dans le tissu. On a evalue in vivo la synthese de novo des acides gras, qui s`est revelee similaire chez les rats soumis a la diete HPHG ou a une diete temoin; toutefois, chez les rats soumis a la diete HPHG, une diminution de l`activite de la lipoproteine lipase dans le tissus adipeux de l`EPI a ete observee, ce qui laisse croire a une diminution de la capture des acides gras des lipoproteines circulantes. La diete HPHG n`a eu aucun effet sur la synthese du glycerol-3-phosphate (G3P) par la glycolyse ou la glyceroneogenese. L`activite de la glycerokinase, c.-a-d. la phosphorylation du glycerol issu de l`hydrolyse du TAG endogene pour former le GP3, n`a pas ete modifiee non plus par la diete HPHG. A l`oppose, les adipocytes des rats HPHG stimules par la norepinephrine ont eu une plus faible reponse lipolytique, meme si le taux lipolytique basal des adipocytes a ete similaire chez les 2 groupes. Ainsi, les resultats donnent a penser que la diminution de l`activite lipolytique stimulee par la norepinephrine joue un role essentiel dans l`augmentation du TAG observee dans le tissu adipeux de l`EPI des animaux HPHG, probablement en perturbant le processus d`activation de la lipolyse.
Resumo:
In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-(14)C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-(14)C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.
Resumo:
The antimycotic activity of fatty acids has long been known, and their presence in human skin and sweat appears to protect the host against superficial mycoses. Undecanoic acid is a medium-chain fatty acid that has been used in the treatment of dermatophytoses in humans. In this study, we selected one Trichophyton rubrum undecanoic acid-resistant strain that showed a marked reduction in its capacity to grow on human nail fragments, which correlated with the reduced activity of secreted keratinolytic proteases. Moreover, the susceptibility of T. rubrum to undecanoic acid is also dependent on the carbon source utilized by both control and resistant strains. The growth of the control strain was strongly inhibited by undecanoic acid in Sabouraud medium or in cultures supplemented with low-fat milk, whereas it was ineffective when the cultures were supplemented with Tween 20 or keratin as the carbon source, suggesting that nutrient conditions are crucial in establishing a susceptibility to antifungal drugs, which is helpful for the isolation and characterization of resistant strains, and in the screening for new antifungal drugs.
Resumo:
Epilepsy is the most common neurological disorder in both dogs and humans. Although the pharmacological options for treatment of epilepsies have increased. it has been reported that two-thirds of dogs with epilepsy are refractory to antiepileptic drug therapy. To our knowledge, there are no experimental Studies in the literature that show an effect of omega-3 supplementation oil epilepsy in dogs. Our case study describes the effectiveness of daily intake of a moderate amount of fish oil in a case of canine epilepsy. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The Schistosoma mansoni fatty acid binding protein (FABP), SmA, is a vaccine candidate against, S. mansoni and F hepatica. Previously, we demonstrated the importance of a correct fold to achieve protection in immunized animals after cercariae challenge [[10]. C.R.R. Ramos, R.C.R. Figueredo, T.A. Pertinhez, M.M. Vilar, A.L.T.O. Nascimento, M. Tendler, I. Raw, A. Spisni, P.L. Ho, Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein: structural, functional and immunoprotection analysis. J. Biol. Chem. 278 (2003) 12745-12751]. Here we show that the reduction of vaccine efficacy over time is due to protein dimerization and subsequent aggregation. We produced the mutants Sm14-M20(C62S) and Sm14M20(C62V) that, as expected, did not dimerize in SDS-PAGE. Molecular dynamics calculations and unfolding experiments highlighted a higher structural stability of these mutants with respect to the wild-type. In addition, we found that the mutated proteins, after thermal denaturation, refolded to their active native molecular architecture as proved by the recovery of the fatty acid binding ability. Sm14-M20(C62V) turned out to be the more stable form over time, providing the basis to determine the first 3D solution structure of a Sm14 protein in its apo-form. Overall, Sm14-M20(C62V) possesses an improved structural stability over time, an essential feature to preserve its immunization capability and, in experimentally immunized animals, it exhibits a protection effect against S. mansoni cercariae infections comparable to the one obtained with the wild-type protein. These facts indicate this protein as a good lead molecule for large-scale production and for developing an effective Sm14 based anti-helminthes vaccine. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this work was to evaluate the fatty acid composition of the Longissimus muscle from carcasses of Nellore steers fed diets with calcium salts of fatty acids (CSFA) and high moisture corn. Forty eight steers were fed during 70 days four diets containing dry corn (DC), high moisture corn (HM). dry corn plus CSFA (DC-CSFA) or high moisture corn plus CSFA (HM-CSFA). Fatty acid composition of the Longissimus muscle was determined by gas chromatography. Corn type had no effect on the ether extract percentage and in the content of the majority of the fatty acids, although steers fed HMC showed higher levels of polyunsaturated fatty acids and polyunsaturated/saturated ratio. Feeding CSFA increased ether extract percentage but had no effect on total of saturated, unsaturated and saturated: unsaturated ratio. Both high moisture corn and calcium salts of fatty acids increased CIA (cis9, trans11) and total CIA concentrations in intramuscular fat (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Malvales is an order of flowering plants with a controversial circumscription. The relationships between taxa, particularly Malvaceae, Bombacaceae, Sterculiaceae, and Tiliaceae, are not well delineated. Several studies have reported the fatty acid compositions of Malvaceae plants but not for taxonomic purposes. In the present study, the fatty acid composition of oilseeds from seven species belonging to the Malvaceae family was determined by capillary gas chromatography/mass spectrometry (GC/MS), and the quantitative distribution of fatty acids was analyzed by a cluster analysis With Euclidean Distance and UPGMA. The oil content in the seeds was very low (8.3-11.8%). The profile of fatty acids showed that there were two distinct groups: species rich in palmitic acid (Herissantia tiubae, Sidastrum paniculatum and Sida rhombifolia) and species rich in linoleic acid (other Sida species). The fatty acid profiles found for Sida species are consistent with other reported data. Although our data support a distinction between Sida and Sidastrum, more species should be analyzed to evaluate the real taxonomic value of differences in fatty acid content for distinguishing Malvaceae. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The fatty acid composition of immune cells appears to contribute to variations of cell function. The independent and combined effects of a single session of exercise (SSE) and glutamine supplementation (GS) on neutrophil fatty acid composition were investigated. Compared to control (no treatment given - i.e. neither SSE or GS), single session of exercise decreased myristic, palmitic and eicosapentaenoic (EPA) acids, and increased lauric, oleic, linoleic, arachidonic (AA) and docosahexaenoic (DHA) acids whereas glutamine supplementation combined with SSE (GS+SSE) increased oleic acid. Polyunsaturated/saturated fatty acid ratio and Unsaturation index were higher in neutrophils from the SSE and GS groups as compared with control. These findings support the proposition that SSE and GS may modulate neutrophil function through alterations in fatty acid composition.
Resumo:
Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.
Resumo:
Four species of marine benthic algae (Laurencia filiformis, L. intricata, Gracilaria domingensis and G. birdiae) that belong to the phylum Rhodophyta were collected in Espirito Santo State, Brazil and investigated concerning their biochemical composition (fatty acid, total lipid, soluble proteins, amino acid and ash). The total content of lipid (% dry weight) ranged from 1.1% to 6.2%: fatty acid from 0.7% to 1.0%: soluble protein from 4.6% to 18.3%, amino acid from 6.7% to 11.3% and ash from 22.5% to 38.4%. judging from their composition, the four species of algae appear to be potential sources of dietary proteins, amino acids, lipids and essential fatty acids for humans and animals. (C) 2009 Elsevier Ltd. All rights reserved.