258 resultados para FLICE inhibitory protein
Resumo:
Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
To investigate the luteal phase endometrial expression of leukemia inhibitor factor (LIF), insulin-like growth factor 1 (IGF-1), progesterone receptor (PR), claudin 4 (CLDN4), vascular-endothelial growth factor receptor 3 (VEGFR-3), bone morphogenetic protein 4 (BMP-4) and citokeratin 7 (CK-7), we obtained luteal phase endometrial samples from 52 women. Samples were dated and integrated using a tissue microarray (TMA). Samples were immunostained for LIF, IGF-1, PR, CLDN4, VEGFR-3, BMP-4 and CK-7. Frequencies of positive expressions at the early, mid and late luteal phases were compared by two proportions test. Concomitant expression of these proteins was assessed with Chi-square or Fischer`s test. The frequency of LIF was positively correlated to the frequency of IGF-1 (r = 0.99; p < 0.05) and PR (r = 0.99; p < 0.05), and the correlation between IGF-1 and PR tended to be significant (r = 0.98; p < 0.1). The expression of PR was associated with the absence of CLDN4 (p < 0.001). Thus, expression of LIF, IGF-1 and PR are correlated during the luteal phase, and immunohistochemistry for these proteins might be used to assist in the assessment of endometrial maturation. In addition, the expression of CLDN4 and PR was not concomitant, warranting further investigation on the relationship of their endometrial expression.
Resumo:
The present work investigated the role of the sympathetic nervous system (SINS) in the control of protein degradation in skeletal muscles from rats with streptozotocin (STZ)-induced diabetes. Diabetes (1, 3, and 5 days after STZ) induced a significant increase in the norepinephrine content of soleus and EDL muscles, but it did not affect plasma catecholamine levels. Chemical sympathectomy induced by guanethidine (100 mg/kg body weight, for 1 or 2 days) reduced muscle norepinephrine content to negligible levels (less than 5%), decreased plasma epinephrine concentration, and further increased the high rate of protein degradation in muscles from acutely diabetic rats. The rise in the rate of proteolysis (nmol.mg wet wt(-1).2h(-1)) in soleus from 1-day diabetic sympathectomized rats was associated with increased activities of lysosomal (0.127 +/- 0.008 vs. 0.086 +/- 0.013 in diabetic control) and ubiquitin (Ub)-proteasome-dependent proteolytic pathways (0.154 +/- 0,007 vs. 0.121 +/- 0.006 in diabetic control). Increases in Ca2+-depenclent (0.180 +/- 0.007 vs. 0.121 +/- 0.011 in diabetic control) and Ub-proteasome-dependent proteolytic systems (0.092 +/- 0.003 vs. 0.060 +/- 0.002 in diabetic control) were observed in EDL from 1-day diabetic sympathectomized rats. The lower phosphorylation levels of AKT and Foxo3a in EDL muscles from 3-day diabetic rats were further decreased by sympathectomy. The data suggest that the SNS exerts acute inhibitory control of skeletal muscle proteolysis during the early stages of diabetes in rats, probably involving the AKT/Foxo signaling pathway.
Resumo:
The cellular prion protein (PrP(c)) has been implicated with the modulation of neuronal apoptosis, adhesion, neurite outgrowth and maintenance which are processes involved in the neocortical development. Malformations of cortical development (MCD) are frequently associated with neurological conditions including mental retardation, autism, and epilepsy. Here we investigated the behavioral performance of female adult PrP(c)-null mice (Prnp(%)) and their wild-type controls (Prnp(+/+)) presenting unilateral polymicrogyria, a MCD experimentally induced by neonatal freeze-lesion in the right hemisphere. injured mice from both genotypes presented similar locomotor activity but Prnp(%) mice showed a tendency to increase anxiety-related responses when compared to Prnp(+/+) animals. Additionally, injured Prnp(%) mice have a poorer performance in the social recognition task than sham-operated and Prnp(%) injured ones. Moreover the step-down inhibitory avoidance task was not affected by the procedure or the genotype of the animals. These data suggest that the genetic deletion of PrP(c) confers increased susceptibility to short-term social memory deficits induced by neonatal freezing model of polymicrogyria in mice. (C) 2008 Published by Elsevier B.V.
Resumo:
Platelet aggregation and acute inflammation are key processes in vertebrate defense to a skin injury. Recent studies uncovered the mediation of 2 serine proteases, cathepsin G and chymase, in both mechanisms. Working with a mouse model of acute inflammation, we revealed that an exogenous salivary protein of Ixodes ricinus, the vector of Lyme disease pathogens in Europe, extensively inhibits edema formation and influx of neutrophils in the inflamed tissue. We named this tick salivary gland secreted effector as I ricinus serpin-2 (IRS-2), and we show that it primarily inhibits cathepsin G and chymase, while in higher molar excess, it affects thrombin activity as well. The inhibitory specificity was explained using the crystal structure, determined at a resolution of 1.8 angstrom. Moreover, we disclosed the ability of IRS-2 to inhibit cathepsin G-induced and thrombin-induced platelet aggregation. For the first time, an ectoparasite protein is shown to exhibit such pharmacological effects and target specificity. The stringent specificity and biological activities of IRS-2 combined with the knowledge of its structure can be the basis for the development of future pharmaceutical applications. (Blood. 2011;117(2):736-744)
Resumo:
Objectives: The effect of glucose and palmitate on the phosphorylation of proteins associated with cell growth and survival (extracellular signal-regulated kinase 1/2 [ERK1/2] and stress-activated protein kinase/c-Jun NH2-terminal kinase [SAPK/JNK]) and on the expression of immediate early genes was investigated. Methods: Groups of freshly isolated rat pancreatic islets were incubated in 10-mmol/L glucose with palmitate, LY294002, or fumonisin B1 for the measurement of the phosphorylation and the content of ERK1/2, JNK/SAPK, and v-akt murine thymoma viral oncongene (AKT) (serine 473) by immunoblotting. The expressions of the immediate early genes, c-fos and c-jun, were evaluated by reverse transcription-polymerase chain reaction. Results: Glucose at 10 mmol/L induced ERK1/2 and AKT phosphorylations and decreased SAPK/JNK phosphorylation. Palmitate (0.1 mmol/L) abolished the glucose effect on ERK1/2, AKT, and SAPK/JNK phosphorylations. LY294002 caused a similar effect. The inhibitory effect of palmitate on glucose-induced ERK1/2 and AKT phosphorylation changes was not observed in the presence of fumonisin B1. Glucose increased c-fos and decreased c-jun expressions. Palmitate and LY294002 abolished these latter glucose effects. The presence of fumonisin B1 abolished the effect induced by palmitate on c-jun expression. Conclusions: Our results suggest that short-term changes of mitogen-activated protein kinase and AKT signaling pathways and c-fos and c-jun expressions caused by glucose are abolished by palmitate through phosphatidylinositol 3-kinase inhibition via ceramide synthesis.
Resumo:
Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin 6 (IL-6), a cytokine that exerts inhibitory effects on several pro-inflammatory cytokines. Although dynamic chronic resistance training has been shown to produce the known ""repeated bout effect"", which abolishes the acute muscle damage, performing of high-intensity resistance training has been regarded highly advisable, at least from the hypertrophy perspective. On the other hand, a more therapeutic, ""non-damaging"" resistance training program, mainly composed of concentric forces, low frequency/low volume of training, and the same exercise, could theoretically benefit the muscle when the main issue is to avoid muscle inflammation (as in the treatment of several ""low-grade"" inflammatory diseases) because the acute effect of each resistance exercise session could be diminished/avoided, at the same time that the muscle is still being overloaded in a concentric manner. However, the benefits of such ""less demanding"" resistance training schedule on the muscle inflammatory profile have never been investigated. Therefore, we assessed the protein expression of IL-6, TNF-alpha, IL-10, IL-10/TNF-alpha ratio, and HSP70 levels and mRNA expression of SCF(beta-TrCP), IL-15, and TLR-4 in the skeletal muscle of rats submitted to resistance training. Briefly, animals were randomly assigned to either a control group (S, n = 8) or a resistance-trained group (T, n = 7). Trained rats were exercised over a duration of 12 weeks (two times per day, two times per week). Detection of IL-6, TNF-alpha, IL-10, and HSP70 protein expression was carried out by western blotting and SCF(beta-TrCP) (SKP Cullin F-Box Protein Ligases), a class of enzymes involved in the ubiquitination of protein substrates to proteasomal degradation, IL-15, and TLR-4 by RT-PCR. Our results show a decreased expression of TNF-alpha and TLR4 mRNA (40 and 60%, respectively; p < 0.05) in the plantar muscle from trained, when compared with control rats. In conclusion, exercise training induced decreased TNF-alpha and TLR-4 expressions, resulting in a modified IL-10/TNF-alpha ratio in the skeletal muscle. These data show that, in healthy rats, 12-week resistance training, predominantly composed of concentric stimuli and low frequency/low volume schedule, down regulates skeletal muscle production of cytokines involved in the onset, maintenance, and regulation of inXammation.
Resumo:
Background/Aim: Nitric oxide (NO) modulates the expression of the chaperone Hsp72 in the heart, and exercise stimulates both NO production and myocardial Hsp72 expression. The main purpose of the study was to investigate whether NO interferes with an exercise-induced myocardial Hsp72 expression. Methods: Male Wistar rats (70-100 days) were divided into control (C, n= 12), L-NAME-treated (L, n= 12), exercise (E, n= 13) and exercise plus L-NAME-treated (EL, n= 20) groups. L-NAME was given in drinking water (700 mg. L(-1)) and the exercise was performed on a treadmill (15-25 m.min(-1), 40-60 min. day(-1)) for seven days. Left ventricle (LV) protein Hsp content, NOS and phosphorylated-NOS (p-NOS) isoforms were measured using Western blotting. The activity of NOS was assayed in LV homogenates by the conversion of [(3)H] L-arginine to [(3)H] L-citrulline. Results: Hsp72 content was increased significantly (223%; p < 0.05) in the E group compared to the C group, but exercise alone did not alter the NOS content, p-NOS isoforms or NOS activity. Contrary to our expectation, L-NAME enhanced (p < 0.05) the exercise-induced Hsp72 content (EL vs. C, L and E groups = 1019%, 548% and 457%, respectively). Although the EL group had increased stimulatory p-eNOS(Ser1177) (over 200%) and decreased inhibitory p-nNOS(Ser852) (similar to 50%) compared to both the E and L groups (p < 0.05), NOS activity was similar in all groups. Conclusions: Our results suggest that exercise-induced cardiac Hsp72 expression does not depend on NO. Conversely, the in vivo L-NAME treatment enhances exercise-induced Hsp72 production. This effect may be due to an increase in cardiac stress. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Helminths and their products have a profound immunomodulatory effect upon the inductive and effector phases of inflammatory responses, including allergy. We have demonstrated that PAS-1, a protein isolated from Ascaris strum worms, has an inhibitory effect on lung allergic inflammation due to its ability to down-regulate eosinophilic inflammation, Th2 cytokine release and IgE antibody production. Here, we investigated the role of IL-12, IFN-gamma and IL-10 in the PAS-1-induced inhibitory mechanism using a murine model of asthma. Wild type C57BL/6, IL-12(-/-), IFN-gamma(-/-) and IL-10(-/-) mice were immunized with PAS-1 and/or OVA and challenged with the same antigens intranasally. The suppressive effect of PAS-I was demonstrated on the cellular influx into airways, with reduction of eosinophil number and eosinophil peroxidase activity in OVA + PAS-1-immunized wild type mice. This effect well correlated with a significant reduction in the levels of IL-4, IL-5, IL-13 and eotaxin in BAL fluid. Levels of IgE and IgG1 antibodies were also impaired in serum from these mice. The inhibitory activity of PAS-I was also observed in IL-12(-/-) mice, but not in IFN-gamma(-/-) and IL-10(-/-) animals. These data show that IFN-gamma and IL-10, but not IL-12, play an important role in the PAS-1 modulatory effect. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Duffy binding protein (DBP), a leading malaria vaccine candidate, plays a critical role ill Plasmodium vivax erythrocyte invasion. Sixty-eight of 366 (18.6%) subjects had IgG anti-DBP antibodies by enzyme-linked immunosorbent assay (ELISA) in a community-based cross-sectional survey ill the Brazilian Amazon Basin. Despite Continuous exposure to low-level malaria transmission, the overall seroprevalence decreased to 9.0% when the Population was reexamined 12 months later. Antibodies from 16 of 50 (360%) Subjects who were ELISA-positive at the baseline were able to inhibit erythrocyte binding to at least one of two DBP variants tested. Most (13 of 16) of these subjects still had inhibitory antibodies when reevaluated 12 months later. Cumulative exposure to malaria was the strongest predictor of DBP seropositivity identified by Multiple logistic regression models in this population. The poor antibody recognition of DBP elicited by natural exposure to P. vivax in Amazonian populations represents a challenge to be addressed by vaccine development strategies.
Resumo:
The increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages of Plasmodium falciparum (50% inhibitory concentration [IC(50)] of 20.3 +/- 1.0 mu M). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage of P. falciparum and show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Our in vivo experiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasite Plasmodium berghei in mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates.
Resumo:
OBJECTIVES: This study assessed the bone density gain and its relationship with the periodontal clinical parameters in a case series of a regenerative therapy procedure. MATERIAL AND METHODS: Using a split-mouth study design, 10 pairs of infrabony defects from 15 patients were treated with a pool of bovine bone morphogenetic proteins associated with collagen membrane (test sites) or collagen membrane only (control sites). The periodontal healing was clinically and radiographically monitored for six months. Standardized pre-surgical and 6-month postoperative radiographs were digitized for digital subtraction analysis, which showed relative bone density gain in both groups of 0.034 ± 0.423 and 0.105 ± 0.423 in the test and control group, respectively (p>0.05). RESULTS: As regards the area size of bone density change, the influence of the therapy was detected in 2.5 mm² in the test group and 2 mm² in the control group (p>0.05). Additionally, no correlation was observed between the favorable clinical results and the bone density gain measured by digital subtraction radiography (p>0.05). CONCLUSIONS: The findings of this study suggest that the clinical benefit of the regenerative therapy observed did not come with significant bone density gains. Long-term evaluation may lead to a different conclusions.
Resumo:
OBJECTIVE: The aim of the present study was to determine the in vitro maximum inhibitory dilution (MID) of two chlorhexidinebased oral mouthwashes (CHX): Noplak®, Periogard®, and one polyhexamethylene biguanide-based mouthwash (PHMB): Sanifill Premium® against 28 field Staphylococcus aureus strains using the agar dilution method. MATERIALS AND METHODS: For each product, decimal dilutions ranging from 1/10 to 1/655,360 were prepared in distilled water and added to Mueller Hinton Agar culture medium. After homogenization, the culture medium was poured onto Petri dishes. Strains were inoculated using a Steers multipoint inoculator and dishes were incubated at 37ºC for 24hours. For reading, MID was considered as the maximum dilution of the mouthwash still capable of inhibiting microbial growth. RESULTS: Sanifill Premium® inhibited the growth of all strains at 1/40 dilution and of 1 strain at 1/80 dilution. Noplak® inhibited the growth of 23 strains at 1/640 dilution and of all 28 strains at 1/320 dilution. Periogard® showed inhibited growth of 7 strains at 1/640 dilution and of all 28 strains at 1/320 dilution. Data were submitted to Kruskal-Wallis statistical test, showing significant differences between the mouthwashes evaluated (p<0.05). No significant difference was found between Noplak® and Periogard® (p>0.05). Sanifill Premium® was the least effective (p<0.05). CONCLUSION: It was concluded that CHX-based mouthwashes present better antimicrobial activity against S. Aureus than the PHMB-based mouthwash.
Resumo:
The aim of this in vitro study was to determine the maximum inhibitory dilution (MID) of four cetylpyridinium chloride (CPC)-based mouthwashes: CPC+Propolis, CPC+Malva, CPC+Eucaliptol+Juá+Romã+Propolis (Natural Honey®) and CPC (Cepacol®), against 28 Staphylococcus aureus field strains, using the agar dilution method. Decimal dilutions ranging from 1/10 to 1/655,360 were prepared and added to Mueller Hinton Agar. Strains were inoculated using Steers multipoint inoculator. The inocula were seeded onto the surface of the culture medium in Petri dishes containing different dilutions of the mouthwashes. The dishes were incubated at 37ºC for 24 h. For readings, the MID was considered as the maximum dilution of mouthwash still capable of inhibiting microbial growth. The obtained data showed that CPC+Propolis had antimicrobial activity against 27 strains at 1/320 dilution and against all 28 strains at 1/160 dilution, CPC+Malva inhibited the growth of all 28 strains at 1/320 dilution, CPC+Eucaliptol+Juá+Romã+Propolis inhibited the growth of 2 strains at 1/640 dilution and all 28 strains at 1/320 dilution, and Cepacol® showed antimicrobial activity against 3 strains at 1/320 dilution and against all 28 strains at 1/160 dilution. Data were submitted to Kruskal-Wallis test, showing that the MID of Cepacol® was lower than that determined for the other products (p<0.05). In conclusion, CPC-mouthwashes showed antimicrobial activity against S. aureus and the addition of other substances to CPC improved its antimicrobial effect.
Resumo:
PURPOSE: To investigate the facial symmetry of rats submitted to experimental mandibular condyle fracture and with protein undernutrition (8% of protein) by means of cephalometric measurements. METHODS: Forty-five adult Wistar rats were distributed in three groups: fracture group, submitted to condylar fracture with no changes in diet; undernourished fracture group, submitted to hypoproteic diet and condylar fracture; undernourished group, kept until the end of experiment, without condylar fracture. Displaced fractures of the right condyle were induced under general anesthesia. The specimens were submitted to axial radiographic incidence, and cephalometric mensurations were made using a computer system. The values obtained were subjected to statistical analyses among the groups and between the sides in each group. RESULTS: There was significative decrease of the values of serum proteins and albumin in the undernourished fracture group. There was deviation of the median line of the mandible relative to the median line of the maxilla, significative to undernutrition fracture group, as well as asymmetry of the maxilla and mandible, in special in the final period of experiment. CONCLUSION: The mandibular condyle fracture in rats with proteic undernutrition induced an asymmetry of the mandible, also leading to consequences in the maxilla.