17 resultados para Explorações de ouro
Resumo:
The common bean is affected by several pathogens that can cause severe yield losses. Here we report the introgression of resistance genes to anthracnose, angular leaf spot and rust in the `carioca-type` bean cultivar `Ruda`. Initially, four backcross (BC) lines were obtained using `TO`, `AB 136`, `Ouro Negro` and `AND 277` as donor parents. Molecular fingerprinting was used to select the lines genetically closer to the recurrent parent. The relative genetic distances between `Ruda` and the BC lines varied between 0.0% and 1.99%. The BC lines were intercrossed and molecular markers linked to the resistance genes were used to identify the plants containing the genes of interest. These plants were selfed to obtain the F(2), F(3) and F(4) plants which were selected based on the presence of the molecular markers mentioned and resistance was confirmed in the F(4) generation by inoculation. Four F(4:7) pyramid lines with all the resistance genes showed resistance spectra equivalent to those of their respective donor parents. Yield tests showed that these lines are as productive as the best `carioca-type` cultivars.
Resumo:
This paper describes the preparation of new adsorbents derived from sugarcane bagasse and wood sawdust (Manilkara sp.) to remove zinc (II) ions from electroplating wastewater. The first part deals with the chemical modification of sugarcane bagasse and wood sawdust, using succinic anhydride to introduce carboxylic acid functions into the material. The obtained materials (modified sugarcane bagasse MB2 and modified wood sawdust MS2) were then characterized by infrared spectroscopy (IR) and used in adsorption experiments. The adsorption experiments evaluates Zn(2+) removal from aqueous single metal solution and real electroplating wastewater on both batch and continuous experiments using fixed-bed columns prepared in laboratorial scale with the obtained adsorbents. Adsorption isotherms were then developed using Langmuir model and the Thomas kinetic model. The calculated Zn(2+) adsorption capacities were found to be 145 mg/g for MS2 and 125 mg/g for MB2 in single metal aqueous solution, whereas for the industrial wastewater these values were 61 mg/g for MS2 and 55 mg/g for MB2.