32 resultados para Estimation of Parameters
Resumo:
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric ICC treats both correct and incorrect answers symmetrically, which results in a logical contradiction in ordering examinees on the ability scale. A data set corresponding to a mathematical test applied in Peruvian public schools is analyzed, where comparisons with other parametric IRT models also are conducted. Several model comparison criteria are discussed and implemented. The main conclusion is that the LPE and RLPE IRT models are easy to implement and seem to provide the best fit to the data set considered.
Resumo:
We discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models. We generalize an earlier work, considering the sojourn times in health states are not identically distributed, for a given vector of covariates. Approaches based on semiparametric and parametric (exponential and Weibull distributions) methodologies are considered. A simulation study is conducted to evaluate the performance of the proposed estimator and the jackknife resampling method is used to estimate the variance of such estimator. An application to a real data set is also included.
Resumo:
In clinical trials, it may be of interest taking into account physical and emotional well-being in addition to survival when comparing treatments. Quality-adjusted survival time has the advantage of incorporating information about both survival time and quality-of-life. In this paper, we discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models for the sojourn times in health states. Semiparametric and parametric (with exponential distribution) approaches are considered. A simulation study is presented to evaluate the performance of the proposed estimator and the jackknife resampling method is used to compute bias and variance of the estimator. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Modeling of spatial dependence structure, concerning geoestatistics approach, is an indispensable tool for fixing parameters that define this structure, applied on interpolation of values in places that are not sampled, by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations on sampled data. Thus, this trial aimed at using diagnostics techniques of local influence in spatial linear Gaussians models, applied at geoestatistics in order to evaluate sensitivity of maximum likelihood estimators and restrict maximum likelihood to small perturbations in these data. So, studies with simulated and experimental data were performed. Those results, obtained from the study of real data, allowed us to conclude that the presence of atypical values among the sampled data can have a strong influence on thematic maps, changing, therefore, the spatial dependence. The application of diagnostics techniques of local influence should be part of any geoestatistic analysis, ensuring that the information from thematic maps has better quality and can be used with greater security by farmers.
Resumo:
A modelagem da estrutura de dependência espacial pela abordagem da geoestatística é fundamental para a definição de parâmetros que definem esta estrutura, e que são utilizados na interpolação de valores em locais não amostrados pela técnica de krigagem. Entretanto, a estimação de parâmetros pode ser muito afetada pela presença de observações atípicas nos dados amostrados. O desenvolvimento deste trabalho teve por objetivo utilizar técnicas de diagnóstico de influência local em modelos espaciais lineares gaussianos, utilizados em geoestatística, para avaliar a sensibilidade dos estimadores de máxima verossimilhança e máxima verossimilhança restrita na presença de dados discrepantes. Estudos com dados experimentais mostraram que tanto a presença de valores atípicos como de valores considerados influentes, pela análise de diagnóstico, pode exercer forte influência nos mapas temáticos, alterando, assim, a estrutura de dependência espacial. As aplicações de técnicas de diagnóstico de influência local devem fazer parte de toda análise geoestatística a fim de garantir que as informações contidas nos mapas temáticos tenham maior qualidade e possam ser utilizadas com maior segurança pelo agricultor.
Resumo:
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.
Resumo:
A combination of trajectory sensitivity method and master-slave synchronization was proposed to parameter estimation of nonlinear systems. It was shown that master-slave coupling increases the robustness of the trajectory sensitivity algorithm with respect to the initial guess of parameters. Since synchronization is not a guarantee that the estimation process converges to the correct parameters, a conditional test that guarantees that the new combined methodology estimates the true values of parameters was proposed. This conditional test was successfully applied to Lorenz's and Chua's systems, and the proposed parameter estimation algorithm has shown to be very robust with respect to parameter initial guesses and measurement noise for these examples. Copyright (C) 2009 Elmer P. T. Cari et al.
Resumo:
In many statistical inference problems, there is interest in estimation of only some elements of the parameter vector that defines the adopted model. In general, such elements are associated to measures of location and the additional terms, known as nuisance parameters, to control the dispersion and asymmetry of the underlying distributions. To estimate all the parameters of the model and to draw inferences only on the parameters of interest. Depending on the adopted model, this procedure can be both algebraically is common and computationally very costly and thus it is convenient to reduce it, so that it depends only on the parameters of interest. This article reviews estimation methods in the presence of nuisance parameters and consider some applications in models recently discussed in the literature.
Resumo:
Context. Star activity makes the mass determination of CoRoT-7b and CoRoT 7c uncertain. Investigators of the CoRoT team proposed several solutions, but all but one of them are larger than the initial determinations of 4.8 +/- 0.8 M(Earth) for CoRoT-7b and 8.4 +/- 0.9 M(Earth) for CoRoT 7c. Aims. This investigation uses the excellent HARPS radial velocity measurements of CoRoT-7 to redetermine the planet masses and to explore techniques for determining mass and orbital elements of planets discovered around active stars when the relative variation in the radial velocity due to the star activity cannot be considered as just noise and can exceed the variation due to the planets. Methods. The main technique used here is a self-consistent version of the high-pass filter used by Queloz et al. (2009, A&A, 506, 303) in the first mass determination of CoRoT-7b and CoRoT-7c. The results are compared to those given by two alternative techniques: (1) the approach proposed by Hatzes et al. (2010, A&A, 520, A93) using only those nights in which two or three observations were done; (2) a pure Fourier analysis. In all cases, the eccentricities are taken equal to zero as indicated by the study of the tidal evolution of the system. The periods are also kept fixed at the values given by Queloz et al. Only the observations done in the time interval BJD 2 454 847-873 are used because they include many nights with multiple observations; otherwise, it is not possible to separate the effects of the rotation fourth harmonic (5.91 d = P(rot)/4) from the alias of the orbital period of CoRoT-7b (0.853585 d). Results. The results of the various approaches are combined to give planet mass values 8.0 +/- 1.2 M(Earth) for CoRoT-7b and 13.6 +/- 1.4 M(Earth) for CoRoT 7c. An estimation of the variation of the radial velocity of the star due to its activity is also given. Conclusions. The results obtained with three different approaches agree to give higher masses than those in previous determinations. From the existing internal structure models they indicate that CoRoT-7b is a much denser super-Earth. The bulk density is 11 +/- 3.5 g cm(-3), so CoRoT-7b may be rocky with a large iron core.
Resumo:
We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] less than or similar to -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of similar to 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low- metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.
Resumo:
Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.
Resumo:
BACKGROUND: This work deals with the xylitol production by biotechnological routes emphasizing the purification process using crystallization. RESULTS: Xylitol volumetric productivity of 0.665 g L(-1) h(-1) and yield of 0.7024 g g(-1) were obtained after 92 h fermentation. The fermented broth (61.3 g L(-1) xylitol) was centrifuged, treated and concentrated obtain a syrup (745.3 g L(-1) xylitol) which was crystallized twice, xylitol crystals with 98.5-99.2% purity being obtained. CONCLUSION: The hypothetical distribution obtained permits the determination of modeling parameters, which make possible the estimation of crystal dominant size from different initial experimental conditions. (C) 2008 Society of Chemical Industry
Resumo:
The practicability of estimating directional wave spectra based on a vessel`s 1st order response has been recently addressed by several researchers. Different alternatives regarding statistical inference methods and possible drawbacks that could arise from their application have been extensively discussed, with an apparent preference for estimations based on Bayesian inference algorithms. Most of the results on this matter, however, rely exclusively on numerical simulations or at best on few and sparse full-scale measurements, comprising a questionable basis for validation purposes. This paper discusses several issues that have recently been debated regarding the advantages of Bayesian inference and different alternatives for its implementation. Among those are the definition of the best set of input motions, the number of parameters required for guaranteeing smoothness of the spectrum in frequency and direction and how to determine their optimum values. These subjects are addressed in the light of an extensive experimental campaign performed with a small-scale model of an FPSO platform (VLCC hull), which was conducted in an ocean basin in Brazil. Tests involved long and short crested seas with variable levels of directional spreading and also bimodal conditions. The calibration spectra measured in the tank by means of an array of wave probes configured the paradigm for estimations. Results showed that a wide range of sea conditions could be estimated with good precision, even those with somewhat low peak periods. Some possible drawbacks that have been pointed out in previous works concerning the viability of employing large vessels for such a task are then refuted. Also, it is shown that a second parameter for smoothing the spectrum in frequency may indeed increase the accuracy in some situations, although the criterion usually proposed for estimating the optimum values (ABIC) demands large computational effort and does not seem adequate for practical on-board systems, which require expeditious estimations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.
Resumo:
Second-order phase locked loops (PLLs) are devices that are able to provide synchronization between the nodes in a network even under severe quality restrictions in the signal propagation. Consequently, they are widely used in telecommunication and control. Conventional master-slave (M-S) clock-distribution systems are being, replaced by mutually connected (MC) ones due to their good potential to be used in new types of application such as wireless sensor networks, distributed computation and communication systems. Here, by using an analytical reasoning, a nonlinear algebraic system of equations is proposed to establish the existence conditions for the synchronous state in an MC PLL network. Numerical experiments confirm the analytical results and provide ideas about how the network parameters affect the reachability of the synchronous state. The phase-difference oscillation amplitudes are related to the node parameters helping to design PLL neural networks. Furthermore, estimation of the acquisition time depending on the node parameters allows the performance evaluation of time distribution systems and neural networks based on phase-locked techniques. (c) 2008 Elsevier GmbH. All rights reserved.