20 resultados para Epidemic encephalitis.
Resumo:
The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.
Resumo:
Using digitized images of the three-dimensional, branching structures for root systems of bean seedlings, together with analytical and numerical methods that map a common susceptible-infected- recovered (`SIR`) epidemiological model onto the bond percolation problem, we show how the spatially correlated branching structures of plant roots affect transmission efficiencies, and hence the invasion criterion, for a soil-borne pathogen as it spreads through ensembles of morphologically complex hosts. We conclude that the inherent heterogeneities in transmissibilities arising from correlations in the degrees of overlap between neighbouring plants render a population of root systems less susceptible to epidemic invasion than a corresponding homogeneous system. Several components of morphological complexity are analysed that contribute to disorder and heterogeneities in the transmissibility of infection. Anisotropy in root shape is shown to increase resilience to epidemic invasion, while increasing the degree of branching enhances the spread of epidemics in the population of roots. Some extension of the methods for other epidemiological systems are discussed.
Resumo:
We study random walks systems on Z whose general description follows. At time zero, there is a number N >= 1 of particles at each vertex of N, all being inactive, except for those placed at the vertex one. Each active particle performs a simple random walk on Z and, up to the time it dies, it activates all inactive particles that it meets along its way. An active particle dies at the instant it reaches a certain fixed total of jumps (L >= 1) without activating any particle, so that its lifetime depends strongly on the past of the process. We investigate how the probability of survival of the process depends on L and on the jumping probabilities of the active particles.
Resumo:
We study four discrete-time stochastic systems on N, modeling processes of rumor spreading. The involved individuals can either have an active or a passive role, speaking up or asking for the rumor. The appetite for spreading or hearing the rumor is represented by a set of random variables whose distributions may depend on the individuals. Our goal is to understand-based on the distribution of the random variables-whether the probability of having an infinite set of individuals knowing the rumor is positive or not.
Resumo:
We consider a random walks system on Z in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on Z, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to I but not fast enough.