61 resultados para ENZYMATIC INTERESTERIFICATION
Resumo:
The present study describes the enzymatic properties and molecular identification of 5`-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K-m (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7 +/- 10.4 mu M and 134.8 +/- 32.1 mu M, with V-max values of 6.7 +/- 0.4 and 143.8 +/- 23.8 nmol P-i/min/mg of protein (means +/- S.D., n = 4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5`-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5`-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca2+ influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.
Resumo:
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is a thiol-rich metallopeptidase ubiquitously distributed in mammalian tissues and involved in oligopeptide metabolism both within and outside cells. Fifteen Cys residues are present in the rat EP24.15 protein, seven are solvent accessible, and two are found inside the catalytic site cleft; no intraprotein disulfide is described. In the present investigation, we show that mammalian immunoprecipitated EP24.15 is S-glutathionylated. In vitro EP24.15 S-glutathionylation was demonstrated by the incubation of bacterial recombinant EP24.15 with oxidized glutathione concentration as low as 10 mu M. The in vitro S-glutathionylation of EP24.15 was responsible for its oxidative oligomerization to dimer and trimer complexes. EP24.15 immunoprecipitated from cells submitted to oxidative challenge showed increased trimeric forms and decreased S-glutathionylation compared to immunoprecipitated protein from control cells. Our present data also show that EP24.15 maximal enzymatic activity is maintained by partial S-glutathionylation, a mechanism that apparently regulates the protein oligomerization. Present results raise the possibility of an unconventional property of protein S-glutathionylation, inducing oligomerization by interprotein thiol-disulfide exchange. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Oxidative stress has been associated with normal aging and Alzheimer`s disease (AD). However, little is known about oxidative stress in mild cognitive impairment (MCI) patients who present a high risk for developing AD. The aim of this study was to investigate plasma production of the lipid peroxidation marker, malonaldehyde (MDA) and to determine, in erythrocytes, the enzymatic antioxidant activity of catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) in 33 individuals with MCI, 29 with mild probable AD and 26 healthy aged subjects. GR/GPx activity ratio was calculated to better assess antioxidant defenses. The relationship between oxidative stress and cognitive performance was also evaluated by the Mini Mental State Examination (MMSE). AD patients showed higher MDA levels than both MCI and healthy elderly subjects. MCI subjects also exhibited higher MDA levels compared to controls. Catalase and GPx activity were similar in MCI and healthy individuals but higher in AD. GR activity was lower in MCI and AD patients than in healthy aged subjects. Additionally, GR/GPx ratio was higher in healthy aged subjects, intermediate in MCI and lower in AD patients. No differences in GST activity were detected among the groups. MMSE was negatively associated with MDA levels (r = -0.31, p = 0.028) and positively correlated with GR/GPx ratio in AD patients (r = 0.68, p < 0.001). MDA levels were also negatively correlated to GR/GPx ratio (r = -0.31, p = 0.029) in the AD group. These results suggest that high lipid peroxidation and decreased antioxidant defenses may be present early in cognitive disorders.
Resumo:
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide is used to kill phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91-phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients. This article lists all mutations identified in CYBB in the X-linked form of CGD. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of future disease-causing mutations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Apocynin has been extensively used as an inhibitor of NADPH oxidase (NOX) in many experimental models using phagocytic and non-phagocytic cells. Currently, there is some controversy about the efficacy of apocynin in non-phagocytic cells, but in phagocytes the reported results are consistent, which could be due to the presence of myeloperoxidase in these cells. This enzyme has been proposed as responsible for activating apocynin by generating its dimer, diapocynin, which is supposed to be the active compound that prevents NADPH oxidase complex assembly and activation. Here, we synthesized diapocynin and studied its effect on inhibition of gp91(phox) RNA expression. We found that diapocynin strongly inhibited the expression of gp91(phox)mRNA in peripheral blood mononuclear cells (PBMC). Only at a higher concentration, apocynin was able to exert the same effect. We also compared the apocynin and diapocynin efficacy as inhibitors of tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) production in response to lipopolysaccharide (LPS)-activated PBMC. Although apocynin did inhibit TNF-alpha production, diapocynin had a much more pronounced effect, on both TNF-alpha and IL-10 production. In conclusion, these findings suggest that the bioconversion of apocynin to diapocynin is an important issue not limited to enzymatic activity inhibition, but also for other biological effects as gp91(phox) mRNA expression and cytokine production. Hence, as diapocynin can be easily prepared from apocynin, a one-step synthesis, we recommend its use in studies where the biological effects of apocynin are searched. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Aims: To determine the prevalence and expression of metallo-beta-lactamases (MBL)-encoding genes in Aeromonas species recovered from natural water reservoirs in southeastern Brazil. Methods and Results: Eighty-seven Aeromonas isolates belonging to Aeromonas hydrophila (n = 41) and Aer. jandaei (n = 46) species were tested for MBL production by the combined disk test using imipenem and meropenem disks as substrates and EDTA or thioglycolic acid as inhibitors. The presence of MBL genes was investigated by PCR and sequencing using new consensus primer pairs designed in this study. The cphA gene was found in 97.6% and 100% of Aer. hydrophila and Aer. jandaei isolates, respectively, whereas the acquired MBL genes bla(IMP), bla(VIM) and bla(SPM-1) were not detected. On the other hand, production of MBL activity was detectable in 87.8% and 10.9% of the cphA-positive Aer. hydrophila and Aer. jandaei isolates respectively. Conclusions: Our results indicate that cphA seems to be intrinsic in the environmental isolates of Aer. hydrophila and Aer. jandaei in southeastern Brazil, although, based on the combined disk test, not all of them are apparently able to express the enzymatic activity. Significance and Impact of the Study: These data confirm the presence of MBL-producing Aeromonas species in natural water reservoirs. Risk of water-borne diseases owing to domestic and industrial uses of freshwater should be re-examined from the increase of bacterial resistance point of view.
Resumo:
P>Acute ocular infection due to free-living amoebae of the genus Acanthamoeba is characterized by severe pain, loss of corneal transparency and, eventually, blindness. Proteolytic enzymes secreted by trophozoites of virulent Acanthamoeba strains have an essential role in the mechanisms of pathogenesis, including adhesion, invasion and destruction of the corneal stroma. In this study, we analysed the relationship between the extracellular proteases secreted by clinical isolates of Acanthamoeba and the clinical manifestations and severity of disease that they caused. Clinical isolates were obtained from patients who showed typical symptoms of Acanthamoeba keratitis. Trophozoites were cultivated axenically, and extracellular proteins were collected from cell culture supernatants. Secreted enzymes were partially characterized by gelatin and collagen zymography. Acanthamoeba trophozoites secreted proteases with different molecular masses, proteolysis rates and substrate specificities, mostly serine-like proteases. Different enzymatic patterns of collagenases were observed, varying between single and multiple collagenolytic activities. Low molecular weight serine proteases were secreted by trophozoites associated with worse clinical manifestations. Consequently, proteolytic enzymes of some Acanthamoeba trophozoites could be related to the degree of their virulence and clinical manifestations of disease in the human cornea.
Resumo:
Glycosylation of the Ab molecule is essential for maintaining the functional structure of Fc region and consequently for Ab-mediated effector functions, such as binding to cells or complement system activation. Alterations in the composition of the sugar moiety can dramatically influence Ab activity; however, it is not completely clear how differences in the N-linked oligosaccharide structure impact the biological function of Abs. We have described that murine IgG1 Abs can be separated according to their ability to elicit in vivo anaphylaxis in a fraction of anaphylactic and other of non-anaphylactic molecules. Furthermore, we showed that the N-linked oligosaccharide chain is essential for the structural conformation of the anaphylactic IgG1, the binding to Fc gamma RIII on mast cells, and, consequently, for the ability to mediate anaphylactic reactions. In this study, we evaluated the contribution of individual sugar residues to this biological function. Differences in the glycan composition were observed when we analyzed oligosaccharide chains from anaphylactic or non-anaphylactic IgG1, mainly the presence of more sialic acid and fucose residues in anaphylactic molecules. Interestingly, the enzymatic removal of terminal sialic acid residues in anaphylactic IgG1 resulted in loss of the ability to trigger mast cell degranulation and in vivo anaphylactic reaction, similarly to the deglycosylated IgG1 Ab. In contrast, fucose removal did not affect the anaphylactic function. Therefore, we demonstrated that the ability of murine IgG1 Abs to mediate anaphylaxis is directly dependent on the amount of sialic acid residues associated to the oligosaccharide chain attached to the Fc region of these molecules. The Journal of Immunology, 2008, 181: 8308-8314.
Resumo:
Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of rnesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H(2)O. The pristine material exhibited a BET specific surface area of 684 m(2) g(-1), total pore volume of 0.89 cm(3) g(-1), external surface area of 49 m(2) g(-1) and microporous volume of 0.09 cm(3) g(-1). The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO(2) EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 mu M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We show a simple strategy to obtain all efficient enzymatic broelectrochemical device, in which urease was immobilized oil electroactive nanostructured membranes (ENMs) made with polyaniline and silver nanoparticles (AgNP) stabilized in polyvinyl alcohol (PAni/PVA-AgNP). Fabrication of the modified electrodes comprised the chemical deposition of polyaniline followed by drop-coating of PVA-AgNP and urease, resulting in a final ITO/PAni/PVA-AgNP/urease electrode Configuration. For comparison. the electrochemical performance of ITO/PAni/urease electrodes (without Ag nanoparticles) was also studied. The performance of the modified electrodes toward Urea hydrolysis was investigated via amperometric measurements, revealing a fast increase in cathodic current with a well-defined peak upon addition of urea to the electrolytic solution. The cathodic currents for the ITO/PAni/PVA-AgNP urease electrodes were significantly higher than for the ITO/PAni/urease electrodes. The friendly environment provided by the ITO/PAni/PVA-AgNP electrode to the immobilized enzyme promoted efficient catalytic conversion of urea into ammonium and bicarbonate tons. Using the Michaelis-Menten kinetics equation, a K(M)(aPP) of 2.7 mmol L(-1) was obtained. indicating that the electrode architecture employed may be advantageous for fabrication of enzymatic devices with improved biocatalytic properties. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Enzyme immobilization in nanostructured films may be useful for a number of biomimetic systems, particularly if suitable matrixes are identified. Here we show that alcohol dehydrogenase (ADH) has high affinity toward a negatively charged phospholipid, dimyristoylphosphatidic acid (DMPA), which forms a Langmuir monolayer at an air-water interface. Incorporation of ADH into the DMPA monolayer was monitored with Surface pressure measurements; and polarization-modulation infrared reflection absorption spectroscopy, with the alpha-helices from ADH being mainly oriented parallel to the water surface. ADH remained at the interface even at high surface pressures, thus allowing deposition of Langmuir-Blodgett (LB) films from the DMPA-ADH film. Indeed, interaction with DMPA enhances the transfer of ADH, where the mass transferred onto a solid support increased from 134 ng for ADH on a Gibbs monolayer to 178 ng for an LB film with DMPA. With fluorescence spectroscopy it was possible to confirm that the ADH structure was preserved even after one month of the LB deposition. ADH-containing films deposited onto gold-interdigitated electrodes were employed in a sensor array capable of detecting ethanol at concentrations down to 10 ppb (in volume), using impedance spectroscopy as the method of detection.
Resumo:
The selective determination of alcohol molecules either in aqueous solutions or in vapor phase is of great importance for several technological areas. In the last years, a number of researchers have reported the fabrication of highly sensitive sensors for ethanol detection, based upon specific enzymatic reactions occurring at the surface of enzyme-containing electrodes. In this study, the enzyme alcohol dehydrogenase (ADH) was immobilized in a layer-by-layer fashion onto Au-interdigitated electrodes (IDEs), in conjunction with layers of PAMAM dendrimers. The immobilization process was followed in Teal time using quartz crystal microbalance (QCM), indicating that an average mass of 52.1 ng of ADH was adsorbed at each deposition step. Detection was carried out using a novel strategy entirely based upon electrical capacitance measurements, through which ethanol could be detected at concentrations of 1 part per million by volume (ppmv). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The immobilization of enzymes in nanostructured films has potential applications, e.g. in biosensing, for which the activity may not only be preserved, but also enhanced if optimized conditions are identified. Optimization is not straightforward because several requirements must be fulfilled, including a suitable matrix and film-forming technique. In this study, we show that horseradish peroxidase (HRP) has its activity enhanced when immobilized in Langmuir-Blodgett (LB) films, in conjunction with dipalmitoylphosphaticlylglycerol (DPPG). Incorporation of HRP into a DPPG monolayer at the air-water interface was demonstrated with compression isotherms, and Polarization-Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS). From the PM-IRRAS data, we inferred that HRP was not denatured when adsorbed on a pre-formed, low pressure DPPG monolayer. A change in orientation was induced by the phospholipid matrix, with the amide C=O and NH groups from HRP being oriented perpendicular to the surface, parallel to the DPPG acyl chains, i.e. the alpha-helix was inserted into the monolayer. The mixed DPPG-HRP monolayer could be transferred onto solid supports, to which HRP activity was ca. 23% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allowed HRP-containing LB films to be used in sensing peroxide. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H(2)O(2), the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 mu M and an apparent Michaelis-Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples. (C) 2008 Elsevier B.V. All rights reserved.