18 resultados para ELECTROLYTE MEMBRANES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the preparation and characterization of a solid polymer electrolyte based on amylopectin-rich starch plasticized with glycerol. The samples were characterized through ionic conductivity (sigma) measurements, scanning electron microscopy, thermal analysis, and spectroscopy in the UV-Vis-NIR region. The results showed that the highest sigma (1.1 x 10(-4) Scm(-1) at 30 degrees C) was obtained for the sample with n = [O]/[Li] = 6.5 ratio. In addition, the samples plasticized with 30-35 wt.% of glycerol presented high ionic conductivity, transparency and conduction stability. The ionic conductivity measurements as a function of lithium salt contents showed a maximum for n=6.5. The ionic conductivity as a function of time for amylopectin-rich starch plasticized with 30 wt.% of glycerol and containing [O]/[Li] = 10 showed conduction stability over 6 months (sigma similar to 3.01 x 10(-5) S cm(-1)). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton-conducting gel polymer electrolytes based on gelatin plasticized with glycerol and containing acetic acid were investigated, characterized, and applied to electrochromic window. For glycerol contents varying from 7% to 48%, the conductivity of the uniform and predominantly amorphous gel electrolyte was found to follow a Vogel-Tamman-Fulcher behavior with the temperature. Typically, for the electrolyte chosen to make 7 x 2 cm(2) electrochromic smart window with the configuration: glass/fluor-doped tin oxide (FTO)/WO(3)/gelatin electrolyte/CeO(2)-TiO(2)/FTO/glass and containing 28% of glycerol, the conductivities were found to be of the order of 5 x 10(-5) S/cm at room temperature and 3.6 x 10(-4) S/cm at 80 A degrees C. The device was characterized by spectroelectrochemical techniques and was tested up to 10,000 cycles showing a fast coloring/bleaching behavior, where the coloring process was achieved in 10 s and the bleaching in 2 s. The transmission variation at the wavelength of 550 nm was about 15%. The cyclic voltammograms showed a very good reversibility of the cathodic/anodic processes, and the charge density was about 3.5 mC/cm(2). The memory tests showed that the transmittance in the colored state increased by 8% in 90 min after removing the potential.