129 resultados para ELECTROCHEMICAL IMPEDANCE
Resumo:
A copper phthalocyanine/multiwalled carbon nanotube film-modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at -50 mV vs. SCE by electrochemical oxidation using differential pulse voltamtnetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly-copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83-9.90 mu mol L(-1), with detection limit 12.2 nmol L(-1) (2.02 mu g L(-1))
Resumo:
A solid graphite-polyurethane composite electrode has been used to determine release profiles of verapamil, a calcium-channel blocker. The electro-oxidation process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy and showed no adsorption of analyte or oxidation products, unlike at other carbon-based electrodes. Quantification gave linear ranges up to 40molL-1 with cyclic voltammetry and detection limits of 0.7molL-1 by differential pulse and square-wave voltammetry. Commercial product samples were successfully analyzed with results equal to those from spectrophotometry. Because no electrode surface renewal is needed, this electrode material has many advantages.
Resumo:
Despite the fact that the majority of the catalytic electro-oxidation of small organic molecules presents oscillatory kinetics under certain conditions, there are few systematic studies concerning the influence of experimental parameters on the oscillatory dynamics. Of the studies available, most are devoted to C1 molecules and just some scattered data are available for C2 molecules. We present in this work a comprehensive study of the electro-oxidation of ethylene glycol on polycrystalline platinum surfaces and in alkaline media. The system was studied by means of electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry, and the impact of parameters such as applied current, ethylene glycol concentration, and temperature were investigated. As in the case of other parent systems, the instabilities in this system were associated with a hidden negative differential resistance, as identified by impedance data. Very rich and robust dynamics were observed, including the presence of harmonic and mixed mode oscillations and chaotic states, in some parameter region. Oscillation frequencies of about 16 Hz characterized the fastest oscillations ever reported for the electro-oxidation of small organic molecules. Those high frequencies were strongly influenced by the electrolyte pH and far less affected by the EG concentration. The system was regularly dependent on temperature under voltammetric conditions but rather independent within the oscillatory regime.
Resumo:
Although titanium and Ti-6Al-4V alloy have been widely used as dental materials, possible undesirable effects such as cytotoxic reactions and neurological disorder due to metal release led to the development of more corrosion resistant and V and Al free titanium alloys, containing Nb, Zr, Mo and Ta atoxic elements. Fluoride containing products used in the prevention of plaque formation and dental caries can affect the stability of the passive oxide films formed on the Ti alloys. In this work, the corrosion behaviour of the new Ti-23Ta alloy has been evaluated in artificial saliva of different pH and fluoride concentration using electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy study showed that the oxide film formed on the alloy in artificial saliva consists of an inner compact film and an outer porous layer. The corrosion resistance of Ti-23Ta alloy which is reduced by increasing F concentration or decreasing pH is related to the resistance of the inner compact layer. The presence of fluoride and low pH of the saliva enhance the porosity of the oxide film and its dissolution.
Resumo:
Ti-6Al-4V alloy has been widely used in restorative surgery due to its high corrosion resistance and biocompatibility. Nevertheless, some studies showed that V and Al release in the organism might induce cytotoxic effects and neurological disorders, which led to the development of V-free alloys and both V- and Al-free alloys containing Nb, Zr, Ta, or Mo. Among these alloys, Ti-13Nb-13Zr alloy is promising due to its better biomechanical compatibility than Ti-6Al-4V. In this work, the corrosion behavior of Ti, Ti-6Al-4V, and Ti-xNb-13Zr alloys (x=5, 13, and 20) was evaluated in Ringer`s solution (pH 7.5) at 37 degrees C through open-circuit potential measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy. Spontaneous passivity was observed for all materials in this medium. Low corrosion current densities (in the order of 10(-7) A/cm(2)) and high impedance values (in the order of 10(5) Omega cm(2) at low frequencies) indicated their high corrosion resistance. EIS results showed that the passivating films were constituted of an outer porous layer (very low resistance) and an inner compact layer (high resistance), the latter providing the corrosion resistance of the materials. There was evidence that the Ti-xNb-13Zr alloys were more corrosion resistant than both Ti and Ti-6Al-4V in Ringer`s solution.
Resumo:
The 475 degrees C embrittlement in stainless steels is a well-known phenomenon associated to alpha prime (alpha`) formed by precipitation or spinodal decomposition. Many doubts still remain on the mechanism of alpha` formation and its consequence on deformation and fracture mechanisms and corrosion resistance. In this investigation, the fracture behavior and corrosion resistance of two high performance ferritic stainless steels were investigated: a superferritic DIN 1.4575 and MA 956 superalloy were evaluated. Samples of both stainless steels (SS) were aged at 475 degrees C for periods varying from 1 to 1,080 h. Their fracture surfaces were observed using scanning electron microscopy (SEM) and the cleavage planes were determined by electron backscattering diffraction (EBSD). Some samples were tested for corrosion resistance using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Brittle and ductile fractures were observed in both ferritic stainless steels after aging at 475 degrees C. For aging periods longer than 500 h, the ductile fracture regions completely disappeared. The cleavage plane in the DIN 1.4575 samples aged at 475 degrees C for 1,080 h was mainly {110}, however the {102}, {314}, and {131} families of planes were also detected. The pitting corrosion resistance decreased with aging at 475 degrees C. The effect of alpha prime on the corrosion resistance was more significant in the DIN 1.4575 SS comparatively to the Incoloy MA 956.
Resumo:
Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.
Resumo:
In the present work, the corrosion resistance of ferritic-martensitic EUROFER 97 and ODS-EUROFER steels was tested in solutions containing NaCl or H(2)SO(4) and KSCN, both at 25 degrees C. The results were compared to those of AISI 430 ferritic and AISI 410 martensitic conventional stainless steels. The as-received samples were tested by electrochemical techniques, specifically, electrochemical impedance spectroscopy, potentiodynamic polarization curves, and double-loop electrochemical potentiokinetic reactivation tests. The surfaces were observed by scanning electron microscopy after exposure to corrosive media. The results showed that EUROFER 97 and ODS-EUROFER alloys present similar corrosion resistance but lower than ferritic AISI 430 and martensitic 410 stainless steels.
Resumo:
This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This article describes a study of the behavior of a mixture of amines and amides, commercially known as Dodigen 213-N (D-213 N), as a corrosion inhibitor for ASTM 1010 mild steel in 10% w/w HCl solution. The concentration range used was 1 x 10(-5) M to 8 x 10(-4) M. The weight loss and electrochemical techniques used were corrosion potential measurement, anodic and cathodic polarization curves, and electrochemical impedance spectroscopy (EIS). The solution temperature was 50 +/- A 1 A degrees C and it was naturally aerated. The corrosion potential values shifted to slightly more positive values, thus indicating mixed inhibitor behavior. The anodic and cathodic polarization curves showed that D-213 N is an effective corrosion inhibitor, since both the anodic and the cathodic reactions were polarized in comparison with those obtained without inhibitor. For all concentrations the cathodic polarization curves were more polarized than the anodic ones. The inhibition efficiency was in the range 75-98%, calculated from values of weight loss and corrosion current density, i (corr), obtained by extrapolation of Tafel cathodic linear region.
Resumo:
In this work, the effect of cerium (IV) ammonium nitrate (CAN) addition on the polymerization of bis-[triethoxysilyl]ethane (BTSE) film applied on carbon steel was studied. The electrochemical characterization of the films was carried out in 0.1 mol L(-1) NaCl solution by open-circuit potential measurements, anodic and cathodic polarization curves and electrochemical impedance spectroscopy (EIS). Morphological and chemical characterization were performed by atomic force microscopy (AFM), contact angle measurements, infrared-spectroscopy, nuclear magnetic resonance and thermogravimetric analysis. The results have clearly shown the improvement on the protective properties of the Ce(4+) modified film as a consequence of the formation of a more uniform and densely reticulated silane film. A mechanism is proposed to explain the accelerating role of Ce(4+) ions on the cross-linking of the silane layer. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Aluminium alloy (AA) 2024-T3 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to localized corrosion attack in chloride containing media, which has been mainly associated to the presence of coarse intermetallics (IMs) in its microstructure. In this work the corrosion behaviour of AA 2024-T3 in low concentrated chloride media was investigated using microscopy and electrochemical methods. TEM/EDS observations on non-corroded samples evidenced the heterogeneous composition within the IMs. In addition, SEM observations showed that intermetallics with the same nominal composition present different reactivity, and that both types of coarse IMs normally found in the alloy microstructure are prone to corrosion. Moreover, EDS analyses showed important compositional changes in corroded IMs, evidencing a selective dissolution of their more active constituents, and the onset of an intense oxygen peak, irrespective to the IM nature, indicating the formation of corrosion products. On the other hand, the results of the electrochemical investigations, in accordance with the SEM/EDS observations, evidenced that IMs corrosion dominates the electrochemical response of the alloy during the first hours of immersion in the test electrolyte. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical behaviour of carbon steel coated with bis-[trimethoxysilylpropyl]amine (BTSPA) filled with silica nanoparticles in naturally aerated 0.1 mol L-1 NaCl solutions was evaluated. The coating was prepared by adding different concentrations of silica nanoparticles (100, 200, 300, 400 and 500 ppm) to the hydrolysis solution and then a second layer without silica nanoparticles was applied. The electrochemical behavior of the coated steel was evaluated by means of open-circuit potential (E-OC), electrochemical impedance spectroscopy (EIS) and polarization curves. Surface characterization was made by atomic force microscopy (AFM), and its hydrophobicity assessed by contact angle measurements. EIS diagrams have shown an improvement of the barrier properties of the silane layer with the silica addition, which was further improved on the bi-layer system. However, a dependence on the filler concentration was verified, and the best electrochemical response was obtained for samples modified with 300 ppm of silica nanoparticles. AFM images have shown a homogeneous distribution of the silica nanoparticles on the sample surface; however particles agglomeration was detected, which degraded the corrosion protection performance. The results were explained on the basis of the improvement of the barrier properties of the coating due to the filler addition and on the onset of defective regions on the more heavily filled coatings allowing easier electrolyte penetration. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Cr3C2-NiCr and WC-Ni coatings are widely used for wear applications at high and room temperature, respectively. Due to the high corrosion resistance of NiCr binder, Cr3C2-NiCr coatings are also used in corrosive environments. The application of WC-Ni coatings in corrosive media is 14 not recommended due to the poor corrosion resistance of the (pure Ni) metallic matrix. It is well known that the addition of Cr to the metallic binder improves the corrosion properties. Erosion-corrosion performance of thermal spray coatings is widely influenced by ceramic phase composition, the size of ceramic particles and also the composition of the metallic binder. In the present work, two types of HVOF thermal spray coatings (Cr3C2-NiCr and WC-Ni) obtained with different spray conditions were studied and compared with conventional micro-cracked hard chromium coatings. Both as-sprayed and polished samples were tested under two erosion-corrosion conditions with different erosivity. Tungsten carbide coatings showed better performance under the most erosive condition, while chromium carbide coatings were superior under less erosive conditions. Some of the tungsten carbide coatings and hard chromium showed similar erosion-corrosion behaviour under more and less erosive conditions. The erosion-corrosion and electrochemical results showed that surface polishing improved the erosion-corrosion properties of the thermally sprayed coatings. The corrosion behaviour of the different coatings has been compared using Electrochemical Impedance Spectroscopy (EIS) and polarization curves. Total material loss due to erosion-corrosion was determined by weight loss measurements. An estimation of the corrosion contribution to the total weight loss was also given. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study evaluates the possibility of replacing the hexavalent chromium passivation treatment used as a sealer after phosphating of carbon steel (SAE 1010) by a treatment with niobium ammonium oxalate (Ox). Samples of carbon steel (SAE 1010) after being phosphated in a zinc phosphate bath (PZn + Ni) were immersed in solution of niobium ammonium oxalate (250 mg L(-1) of Nb) either at pH 3.0 or pH 8.0. A passivation treatment with a solution with CrO(3) (200 mg L(-1) of Cr(6+)) was also used for reference. The corrosion resistance of the phosphated samples after passivation treatments was analyzed in a NaCl 0.5 mol L(-1) solution using electrochemical impedance spectroscopy (EIS) and anodic polarization curves. Salt spray tests were also performed to evaluate their corrosion resistance. The results showed that the highest corrosion resistance was obtained by passivation in a solution with (250 mg L(-1) of Nb) at pH 8.0. (C) 2010 Elsevier B.V. All rights reserved.