78 resultados para Ductile steel
Resumo:
Polarization measurements were conducted to monitor the corrosion behavior of superduplex stainless steel ASTM A995M-Gr.SA/EN 10283-Mat#1.4469(GX2CrNiMo26-7-4) when exposed to a) an electrolyte containing 22,700 parts per million (ppm) of chloride ions at seven different temperatures and b) an electrolyte at 25 GC and different chloride ion concentrations (5800, 22,700, 58,000 and 80,000 ppm of Cl(-)). The polarization curves indicate that the passive films formed are only slightly affected by NaCl concentration, but the pitting potential decreases drastically increasing the temperature, in particular >60 degrees C. The image analysis of the microstructure after potentiodynamic polarization showed that the pitting number and size vary in function of the temperature of the tested medium. Nyquist diagrams were determined by electrochemical impedance spectroscopy to characterize the resistance of the passive layer. According to Nyquist plots, the arc polarization resistance decreases increasing the temperature due to a catalytic degradation of the oxide passive films. (C) 2009 Elsevier Inc. All rights reserved.
Quality of martensitic stainless steel type AISI-420 utilized in the manufacture surgical implements
Resumo:
Until now the martensitic stainless steel type AISI-420 is widely used in the manufacture of surgical implements. These implements present premature corrosion problems identified after cleaning, sterilization and cutting edge loss and/or rupture during the surgical processes.. This study evaluates the steel as to the chemical composition, hardness, microstructure and pitting corrosion resistance in a solution of enzyme detergent diluted in water by anodic cyclic polarization. This mixture is used in the cleaning of surgical implements that are submerged in this solution for 2 h before cleaning and sterilization. The results show steels with martensite microstructures in the ferrite phase, together with impurities. These presented low pitting potential values in compariston to steels with a fully martensitic microstructure.
Resumo:
Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material`s impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 degrees C and 980 degrees C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 degrees C and block-shaped when heat treated at 980 degrees C. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The machining of super duplex stainless steel castings is usually complicated by the difficulty involved in maintaining the dimensional tolerances required for given applications. Internal stresses originating from the solidification process and from subsequent heat treatments reach levels that exceed the material`s yield strength, promoting plastic strain. Stress relief heat treatments at 520 degrees C for 2 h are an interesting option to solve this problem, but because these materials present a thermodynamically metastable condition, a few precautions should be taken. The main objective of this work was to demonstrate that, after solution annealing at 1130 degrees C and water quenching, stress relief at 520 degrees C for 2 h did not alter the duplex microstructure or impair the pitting corrosion resistance of ASTM A890/A890M Grade 6A steel. This finding was confirmed by microstructural characterization techniques, including light optical and scanning electron microscopy, and X-ray diffraction. Corrosion potential measurements in synthetic sea water containing 20,000 ppm of chloride ions were also conducted at three temperatures: 5 degrees C, 25 degrees C and 60 degrees C. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Several studies have shown that austenitic stainless steels are suitable for use in the final phases of orthodontic treatments, such as finishing and retention. These steels demonstrate appropriate mechanical properties, such as high ultimate tensile strength and good corrosion resistance. A new class of materials, the austenic-ferritic stainless steels, is substituting for austenitic stainless steels in several industrial applications where these properties are necessary. This work supports the hypothesis that orthodontic wires of austenic-ferritic stainless steels can replace austenitic stainless steels. The advantages are cost reduction and decrease of the nickel hypersensitivity effect in patients undergoing orthodontic treatments. The object of this study was to evaluate wires of austenitic-ferritic stainless steel SEW 410 Nr. 14517 (Cr26Ni6Mo3Cu3) produced by cold working through rolling and drawing processes. Tests were performed to evaluate the ultimate tensile strength, hardness, ductility, and formability. In accordance with technical standards the wires exhibited ultimate tensile strength and ductility suitable for orthodontic clinical applications. These austenitie-ferritic wires can be an alternative to substitute the common commercial wires of austenic stainless steels with the advantage of decreasing the nickel content.
Resumo:
The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m(3) were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology.
Resumo:
A large percentage of pile caps support only one column, and the pile caps in turn are supported by only a few piles. These are typically short and deep members with overall span-depth ratios of less than 1.5. Codes of practice do not provide uniform treatment for the design of these types of pile caps. These members have traditionally been designed as beams spanning between piles with the depth selected to avoid shear failures and the amount of longitudinal reinforcement selected to provide sufficient flexural capacity as calculated by the engineering beam theory. More recently, the strut-and-tie method has been used for the design of pile caps (disturbed or D-region) in which the load path is envisaged to be a three-dimensional truss, with compressive forces being supported by concrete compressive struts between the column and piles and tensile forces being carried by reinforcing steel located between piles. Both of these models have not provided uniform factors of safety against failure or been able to predict whether failure will occur by flexure (ductile mode) or shear (fragile mode). In this paper, an analytical model based on the strut-and-tie approach is presented. The proposed model has been calibrated using an extensive experimental database of pile caps subjected to compression and evaluated analytically for more complex loading conditions. It has been proven to be applicable across a broad range of test data and can predict the failures modes, cracking, yielding, and failure loads of four-pile caps with reasonable accuracy.
Resumo:
This paper addresses the use of optimization techniques in the design of a steel riser. Two methods are used: the genetic algorithm, which imitates the process of natural selection, and the simulated annealing, which is based on the process of annealing of a metal. Both of them are capable of searching a given solution space for the best feasible riser configuration according to predefined criteria. Optimization issues are discussed, such as problem codification, parameter selection, definition of objective function, and restrictions. A comparison between the results obtained for economic and structural objective functions is made for a case study. Optimization method parallelization is also addressed. [DOI: 10.1115/1.4001955]
Resumo:
AISI H13 tool steel discs were pulsed plasma minded during different times at a constant temperature of 400 degrees C Wear tests were performed in order to study the acting wear mechanisms The samples were characterized by X-ray diffraction, scanning electron microscopy and hardness measurements The results showed that longer nitriding times reduce the wear volumes. The friction coefficient was 0.20 +/- 0 05 for all tested conditions and depends strongly on the presence of debris After wear tests, the wear tracks were characterized by optical and scanning electron microscopy and the wear mechanisms were observed to change from low cycle fatigue or plastic shakedown to long cycle fatigue These mechanisms were correlated to the microstructure and hardness of the nitrided layer (C) 2010 Elsevier B V All rights reserved
Resumo:
Sigma phase is a deleterious one which can be formed in duplex stainless steels during heat treatment or welding. Aiming to accompany this transformation, ferrite and sigma percentage and hardness were measured on samples of a UNS S31803 duplex stainless steel submitted to heat treatment. These results were compared to measurements obtained from ultrasound and eddy current techniques, i.e., velocity and impedance, respectively. Additionally, backscattered signals produced by wave propagation were acquired during ultrasonic inspection as well as magnetic Barkhausen noise during magnetic inspection. Both signal types were processed via a combination of detrended-fluctuation analysis (DFA) and principal component analysis (PCA). The techniques used were proven to be sensitive to changes in samples related to sigma phase formation due to heat treatment. Furthermore, there is an advantage using these methods since they are nondestructive. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the use of a non-destructive, continuous magnetic Barkhausen noise (CMBN) technique to investigate the size and thickness of volumetric defects, in a 1070 steel. The magnetic behavior of the used probe was analyzed by numerical simulation, using the finite element method (FEM). Results indicated that the presence of a ferrite coil core in the probe favors MBN emissions. The samples were scanned with different speeds and probe configurations to determine the effect of the flaw on the CMBN signal amplitude. A moving smooth window, based on a second-order statistical moment, was used for analyzing the time signal. The results show the technique`s good repeatability, and high capacity for detection of this type of defect. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The effects of different tempering temperatures (300-600 degrees C) on abrasive wear resistance of mottled cast iron were studied. Abrasive wear tests were carried out using the rubber-wheel test on quartz sand and the pin test on Al(2)O(3) abrasive cloths. The retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of the specimens was examined by scanning electron microscopy for identifying the wear micromechanism. Bulk hardness and matrix hardness before and after the tests were measured. The results showed that in the two-body (pin-on-disc test) system, the main wear mechanism was microcutting and high matrix hardening was presented. The wear rates presented higher correlation with the retained austenite than with the bulk and matrix hardness. In the three-body system (sand-rubber wheel), the wear surfaces presented indentations due to abrasive rolling. The wear rates had better correlation with both the bulk and matrix hardness (before and after the wear test) than with the retained austenite content. There are two groups of results, high and low wear rates corresponding to each tribosystem, two-body abrasive wear and three-body abrasive wear, respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the results obtained in pin-on-disk test apparatus using glass and alumina as abrasive materials, showing the rates and mechanisms of abrasive wear of 1070 and 52100 steels, and ductile and white cast irons. The test conditions were selected in order to obtain wear rates that correspond to mild and severe abrasion, using different metal hardness-to-abrasive hardness ratios(H/H(A)) and 0.2 or 0.06 mm abrasive grains. The use of bulk Vickers hardness, instead of microhardness, allows a better description of the different abrasion regions. Under severe abrasion, the microcutting mechanism of wear prevailed together with friction coefficients larger than 0.4. On the other hand, when relatively soft abrasives are tested, indentation of abrasive particles followed by its fragmentation, and a creation of a thin deformed layer were the main damage mechanisms, with the friction coefficient lying below 0.4. The abrasive particle size under mild regime is able to change the wear rates in an order of magnitude. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The magnetic Barkhausen energy in the rolling and transversal directions of AISI/SAE 1070 annealed surfaces is studied. The measurements were made in the samples under applied tension in the elastic-plastic region for different angular directions. The outcomes evidence that the magnetic anisotropy coefficient can be used to characterize the linear and nonlinear elastic limits of the material tinder tensile tresses. The results also show that the area of the curve corresponding to the angular dependence of the number of Barkhausen jumps with average energy presents a maximum value that corresponds to the elastic limit of the sample. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The present work presents measurements of the Magnetic Barkhausen Noise (MBN) in commercial AISI/SAE 1005 steel samples for different grain sizes. The correlation between the shape of the MBN jump and the grain size is established. The results show the existence of types of MBN jumps. Also, the outcome shows that one of these types of MBN jumps become ""squarer"" with the decrease of grain size.