55 resultados para Distributed power control algorithm (DPCA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main goal of this paper is to apply the so-called policy iteration algorithm (PIA) for the long run average continuous control problem of piecewise deterministic Markov processes (PDMP`s) taking values in a general Borel space and with compact action space depending on the state variable. In order to do that we first derive some important properties for a pseudo-Poisson equation associated to the problem. In the sequence it is shown that the convergence of the PIA to a solution satisfying the optimality equation holds under some classical hypotheses and that this optimal solution yields to an optimal control strategy for the average control problem for the continuous-time PDMP in a feedback form.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A thermodynamic information system for diagnosis and prognosis of an existing power plant was developed. The system is based on an analytic approach that informs the current thermodynamic condition of all cycle components, as well as the improvement that can be obtained in the cycle performance by the elimination of the discovered anomalies. The effects induced by components anomalies and repairs in other components efficiency, which have proven to be one of the main drawbacks in the diagnosis and prognosis analyses, are taken into consideration owing to the use of performance curves and corrected performance curves together with the thermodynamic data collected from the distributed control system. The approach used to develop the system is explained, the system implementation in a real gas turbine cogeneration combined cycle is described and the results are discussed. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Despite the relevance of irritability emotions to the treatment, prognosis and classification of psychiatric disorders, the neurobiological basis of this emotional state has been rarely investigated to date. We assessed the brain circuitry underlying personal script-driven irritability in healthy subjects (n = 11) using functional magnetic resonance imaging. METHOD: Blood oxygen level-dependent signal changes were recorded during auditory presentation of personal scripts of irritability in contrast to scripts of happiness or neutral emotional content. Self-rated emotional measurements and skin conductance recordings were also obtained. Images were acquired using a 1,5T magnetic resonance scanner. Brain activation maps were constructed from individual images, and between-condition differences in the mean power of experimental response were identified by using cluster-wise nonparametric tests. RESULTS: Compared to neutral scripts, increased blood oxygen level-dependent signal during irritability scripts was detected in the left subgenual anterior cingulate cortex, and in the left medial, anterolateral and posterolateral dorsal prefrontal cortex (cluster-wise p-value < 0.05). While the involvement of the subgenual cingulate and dorsal anterolateral prefrontal cortices was unique to the irritability state, increased blood oxygen level-dependent signal in dorsomedial and dorsal posterolateral prefrontal regions were also present during happiness induction. CONCLUSION: Irritability induction is associated with functional changes in a limited set of brain regions previously implicated in the mediation of emotional states. Changes in prefrontal and cingulate areas may be related to effortful cognitive control aspects that gain salience during the emergence of irritability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with an improved plane frame formulation whose exact dynamic stiffness matrix (DSM) presents, uniquely, null determinant for the natural frequencies. In comparison with the classical DSM, the formulation herein presented has some major advantages: local mode shapes are preserved in the formulation so that, for any positive frequency, the DSM will never be ill-conditioned; in the absence of poles, it is possible to employ the secant method in order to have a more computationally efficient eigenvalue extraction procedure. Applying the procedure to the more general case of Timoshenko beams, we introduce a new technique, named ""power deflation"", that makes the secant method suitable for the transcendental nonlinear eigenvalue problems based on the improved DSM. In order to avoid overflow occurrences that can hinder the secant method iterations, limiting frequencies are formulated, with scaling also applied to the eigenvalue problem. Comparisons with results available in the literature demonstrate the strength of the proposed method. Computational efficiency is compared with solutions obtained both by FEM and by the Wittrick-Williams algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of our study was to compare the effects of 8-week progressive strength and power training regimens on strength gains and muscle plasticity [muscle fiber hypertrophy and phenotype shift, mammalian target of rapamycin (mTOR), regulatory-associated protein of mTOR (RAPTOR), rapamycin-insensitive companion of m-TOR (RICTOR), calcineurin and calcipressin gene expression]. Twenty-nine physically active subjects were divided into three groups: strength training (ST), power training (PT) and control (C). Squat 1 RM and muscle biopsies were obtained before and after the training period. Strength increased similarly for both ST and PT groups (P < 0.001). Fiber types I, IIa and IIb presented hypertrophy main time effect (P < 0.05). Only type IIb percentage decreased from pre- to post-test (main time effect, P < 0.05). mTOR and RICTOR mRNA expression increased similarly from pre- to post-test (P < 0.01). RAPTOR increased after training for both groups (P < 0.0001), but to a greater extent in the ST (P < 0.001) than in the PT group. 4EBP-1 decreased after training when the ST and PT groups were pooled (P < 0.05). Calcineurin levels did not change after training, while calcipressin increased similarly from pre- to post-test (P < 0.01). In conclusion, our data indicate that these training regimens produce similar performance improvements; however, there was a trend toward greater hypertrophy-related gene expression and muscle fiber hypertrophy in the ST group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of supplementary damping controllers to mitigate the effects of electromechanical oscillations in power systems is a highly complex and time-consuming process, which requires a significant amount of knowledge from the part of the designer. In this study, the authors propose an automatic technique that takes the burden of tuning the controller parameters away from the power engineer and places it on the computer. Unlike other approaches that do the same based on robust control theories or evolutionary computing techniques, our proposed procedure uses an optimisation algorithm that works over a formulation of the classical tuning problem in terms of bilinear matrix inequalities. Using this formulation, it is possible to apply linear matrix inequality solvers to find a solution to the tuning problem via an iterative process, with the advantage that these solvers are widely available and have well-known convergence properties. The proposed algorithm is applied to tune the parameters of supplementary controllers for thyristor controlled series capacitors placed in the New England/New York benchmark test system, aiming at the improvement of the damping factor of inter-area modes, under several different operating conditions. The results of the linear analysis are validated by non-linear simulation and demonstrate the effectiveness of the proposed procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this paper is to present architecture of automated system that allows monitoring and tracking in real time (online) the possible occurrence of faults and electromagnetic transients observed in primary power distribution networks. Through the interconnection of this automated system to the utility operation center, it will be possible to provide an efficient tool that will assist in decisionmaking by the Operation Center. In short, the desired purpose aims to have all tools necessary to identify, almost instantaneously, the occurrence of faults and transient disturbances in the primary power distribution system, as well as to determine its respective origin and probable location. The compilations of results from the application of this automated system show that the developed techniques provide accurate results, identifying and locating several occurrences of faults observed in the distribution system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new approach to the transmission loss allocation problem in a deregulated system. This approach belongs to the set of incremental methods. It treats all the constraints of the network, i.e. control, state and functional constraints. The approach is based on the perturbation of optimum theorem. From a given optimal operating point obtained by the optimal power flow the loads are perturbed and a new optimal operating point that satisfies the constraints is determined by the sensibility analysis. This solution is used to obtain the allocation coefficients of the losses for the generators and loads of the network. Numerical results show the proposed approach in comparison to other methods obtained with well-known transmission networks, IEEE 14-bus. Other test emphasizes the importance of considering the operational constraints of the network. And finally the approach is applied to an actual Brazilian equivalent network composed of 787 buses, and it is compared with the technique used nowadays by the Brazilian Control Center. (c) 2007 Elsevier Ltd. All rights reserved.