28 resultados para Distributed coding
Resumo:
Fernando L. Mantelatto, Leonardo G. Pileggi, Ivana Miranda, and Ingo S. Wehrtmann (2011) Does Petrolisthes armatus (Anomura, Porcellanidae) form a species complex or are we dealing with just one widely distributed species? Zoological Studies 50(3): 372-384. Petrolisthes armatus has the widest distribution known among members of the family Porcellanidae and is one of the most ubiquitous and locally abundant intertidal decapods along the Atlantic coast of the Americas. Considering its geographical distribution and morphological plasticity, several authors postulated the existence of a P. armatus species complex. In the present study we used genetic data from the mitochondrial 16S ribosomal gene to determine the genetic variability of P. armatus from selected locations within its eastern tropical Pacific and western Atlantic distributions. Our phylogenic analysis included 49 specimens represented by 26 species of the genus Petrolisthes and 16 specimens from 10 species and 4 related genera. Genetic distances estimated among the analyzed Petrolisthes species ranged from 2.6%-22.0%; varied between 0%-5.7% for 16S. Additionally, the revision of P. armatus specimens from Pacific Costa Rica and Brazilian Waters showed no geographically significant morphological variations among the analyzed specimens. Therefore, our morphological and genetic data do not support the hypothesis of a P. armatus complex within the specimens studied herein from the Americas, but convincingly confirm the monophyly and non-separateness of the members assigned as P. armatus. http://zoolstud.sinica.edu.tw/Journals/50.3/372.pdf
Resumo:
In this paper we study the approximate controllability of control systems with states and controls in Hilbert spaces, and described by a second-order semilinear abstract functional differential equation with infinite delay. Initially we establish a characterization for the approximate controllability of a second-order abstract linear system and, in the last section, we compare the approximate controllability of a semilinear abstract functional system with the approximate controllability of the associated linear system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Resumo:
T cell activation is a complex process involving many steps and the role played by the non-protein-coding RNAs (ncRNAs) in this phenomenon is still unclear. The non-coding T cells transcript (NTT) is differentially expressed during human T cells activation, but its function is unknown. Here, we detected a 426 m NTT transcript by RT-PCR using RNA of human lymphocytes activated with a synthetic peptide of HIV-1. After cloning, the sense and antisense 426 nt NTT transcripts were obtained by in vitro transcription and were sequenced. We found that both transcripts are highly structured and are able to activate PKR. A striking observation was that the antisense 426 nt NTT transcript is significantly more effective in activating PKR than the corresponding sense transcript. The transcription factor NF-kappa B is activated by PKR through phosphorylation and subsequent degradation of its inhibitor I-kappa B beta. We also found that the antisense 426 nt NTT transcript induces more efficiently the degradation Of I-kappa B beta than the sense transcript. Thus, this study suggests that the role played by NTT in the activation of lymphocytes can be mediated by PKR through NF-kappa B activation. However, the physiological significance of the activity of the antisense 426 nt NTT transcript remains unknown. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Five new species of Paepalanthus section Diphyomene are described and illustrated: P. brevis, P. flexuosus, P. longiciliatus, P. macer, and P. stellatus. Paepalanthus brevis, similar to P. decussus, is easily distinguished by its short reproductive axis, and pilose and mucronate leaves. Paepalanthus flexuosus, morphologically related to P. urbanianus, possesses a distinctive short and tortuous reproductive axis. Paepalanthus longiciliatus, morphologically similar to P. weddellianus, possesses long trichomes on the margins of the reproductive axis bracts, considered a diagnostic feature. Paepalanthus macer shares similarities with P. amoenus, differing by its sulfurous capitula and adpressed reproductive axis bracts. Paepalanthus stellatus also has affinity with P. decussus, but possesses unique, membranaceous, reproductive-axis bracts and a punctual inner-capitulum arrangement of pistillate flowers. Four of the described species are narrowly distributed in the state of Goias, whereas P. brevis is endemic to Distrito Federal. All are considered critically endangered. Detailed comparisons of these species are presented in tables. Comments on phenology, distribution, habitat and etymology, along with an identification key, are provided.
Resumo:
Many of the controversies around the concept of homology rest on the subjectivity inherent to primary homology propositions. Dynamic homology partially solves this problem, but there has been up to now scant application of it outside of the molecular domain. This is probably because morphological and behavioural characters are rich in properties, connections and qualities, so that there is less space for conflicting character delimitations. Here we present a new method for the direct optimization of behavioural data, a method that relies on the richness of this database to delimit the characters, and on dynamic procedures to establish character state identity. We use between-species congruence in the data matrix and topological stability to choose the best cladogram. We test the methodology using sequences of predatory behaviour in a group of spiders that evolved the highly modified predatory technique of spitting glue onto prey. The cladogram recovered is fully compatible with previous analyses in the literature, and thus the method seems consistent. Besides the advantage of enhanced objectivity in character proposition, the new procedure allows the use of complex, context-dependent behavioural characters in an evolutionary framework, an important step towards the practical integration of the evolutionary and ecological perspectives on diversity. (C) The Willi Hennig Society 2010.
Resumo:
The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1-/- mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper applies the concepts and methods of complex networks to the development of models and simulations of master-slave distributed real-time systems by introducing an upper bound in the allowable delivery time of the packets with computation results. Two representative interconnection models are taken into account: Uniformly random and scale free (Barabasi-Albert), including the presence of background traffic of packets. The obtained results include the identification of the uniformly random interconnectivity scheme as being largely more efficient than the scale-free counterpart. Also, increased latency tolerance of the application provides no help under congestion.
Resumo:
Burst firing is ubiquitous in nervous systems and has been intensively studied in central pattern generators (CPGs). Previous works have described subtle intraburst spike patterns (IBSPs) that, despite being traditionally neglected for their lack of relation to CPG motor function, were shown to be cell-type specific and sensitive to CPG connectivity. Here we address this matter by investigating how a bursting motor neuron expresses information about other neurons in the network. We performed experiments on the crustacean stomatogastric pyloric CPG, both in control conditions and interacting in real-time with computer model neurons. The sensitivity of postsynaptic to presynaptic IBSPs was inferred by computing their average mutual information along each neuron burst. We found that details of input patterns are nonlinearly and inhomogeneously coded through a single synapse into the fine IBSPs structure of the postsynaptic neuron following burst. In this way, motor neurons are able to use different time scales to convey two types of information simultaneously: muscle contraction (related to bursting rhythm) and the behavior of other CPG neurons (at a much shorter timescale by using IBSPs as information carriers). Moreover, the analysis revealed that the coding mechanism described takes part in a previously unsuspected information pathway from a CPG motor neuron to a nerve that projects to sensory brain areas, thus providing evidence of the general physiological role of information coding through IBSPs in the regulation of neuronal firing patterns in remote circuits by the CNS.
Resumo:
We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.
Resumo:
Usually, a Petri net is applied as an RFID model tool. This paper, otherwise, presents another approach to the Petri net concerning RFID systems. This approach, called elementary Petri net inside an RFID distributed database, or PNRD, is the first step to improve RFID and control systems integration, based on a formal data structure to identify and update the product state in real-time process execution, allowing automatic discovery of unexpected events during tag data capture. There are two main features in this approach: to use RFID tags as the object process expected database and last product state identification; and to apply Petri net analysis to automatically update the last product state registry during reader data capture. RFID reader data capture can be viewed, in Petri nets, as a direct analysis of locality for a specific transition that holds in a specific workflow. Following this direction, RFID readers storage Petri net control vector list related to each tag id is expected to be perceived. This paper presents PNRD cornerstones and a PNRD implementation example in software called DEMIS Distributed Environment in Manufacturing Information Systems.
Resumo:
The clear cell subtype of renal cell carcinoma (RCC) is the most lethal and prevalent cancer of the urinary system. To investigate the molecular changes associated with malignant transformation in clear cell RCC, the gene expression profiles of matched samples of tumor and adjacent non-neoplastic tissue were obtained from six patients. A custom-built cDNA microarray platform was used, comprising 2292 probes that map to exons of genes and 822 probes for noncoding RNAs mapping to intronic regions. Intronic transcription was detected in all normal and neoplastic renal tissues. A subset of 55 transcripts was significantly down-regulated in clear cell RCC relative to the matched nontumor tissue as determined by a combination of two statistical tests and leave-one-out patient cross-validation. Among the down-regulated transcripts, 49 mapped to untranslated or coding exons and 6 were intronic relative to known exons of protein-coding genes. Lower levels of expression of SIN3B, TRIP3, SYNJ2BP and NDE1 (P<0.02), and of intronic transcripts derived from SND1 and ACTN4 loci (P<0.05), were confirmed in clear cell RCC by Real-time RT-PCR. A subset of 25 transcripts was deregulated in additional six nonclear cell RCC samples, pointing to common transcriptional alterations in RCC irrespective of the histological subtype or differentiation state of the tumor. Our results indicate a novel set of tumor suppressor gene candidates, including noncoding intronic RNAs, which may play a significant role in malignant transformations of normal renal cells. (C) 2008 Wiley-Liss, Inc.