90 resultados para Dissociation.
Resumo:
We report cross sections for elastic collisions of low-energy electrons with the CH(2)O-H(2)O complex. We employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations for energies from 0.1 to 20 eV. We considered four different hydrogen-bonded structures for the complex that were generated by classical Monte Carlo simulations. Our aim is to investigate the effect of the water molecule on the pi* shape resonance of formaldehyde. Previous studies reported a pi* shape resonance for CH(2)O at around 1 eV. The resonance positions of the complexes appear at lower energies in all cases due to the mutual polarization between the two molecules. This indicates that the presence of water may favor dissociation by electron impact and may lead to an important effect on strand breaking in wet DNA by electron impact.
Resumo:
Defects in one-dimensional (1D) systems can be intrinsically distinct from its three-dimensional counterparts, and polymer films are good candidates for showing both extremes that are difficult to individuate in the experimental data. We study theoretically the impact of simple hydrogen and oxygen defects on the electron transport properties of one-dimensional poly(para-phenylenevinylene) chains through a multiscale technique, starting from classical structural simulations for crystalline films to extensive ab initio calculations within density functional theory for the defects in single crystalline-constrained chains. The most disruptive effect on carrier transport comes from conjugation breaking imposed by the overcoordination of a carbon atom in the vinyl group independently from the chemical nature of the defect. The particular case of the [C=O] (keto-defect) shows in addition unexpected electron-hole separation, suggesting that the experimentally detected photoluminescence bleaching and photoconductivity enhancement could be due to exciton dissociation caused by the 1D characteristics of the defect.
Resumo:
Elastic scattering of (8)B, (7)Be, and (6)Li on a (58)Ni target has been measured at energies near the Coulomb barrier. Optical-model fits were made to the experimental angular distributions, and total reaction cross sections were deduced. A comparison with other systems provides striking evidence for proton-halo effects on (8)B reactions. As opposed to the situation for the neutron-halo nucleus (6)He, for which particle transfer dominates, the ""extra"" cross section observed for (8)B appears to result entirely from projectile breakup.
Resumo:
The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.
Resumo:
The low-lying doublet and quartet electronic states of the species SeF correlating with the first dissociation channel are investigated theoretically at a high-level of electronic correlation treatment, namely, the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) using a quintuple-zeta quality basis set including a relativistic effective core potential for the selenium atom. Potential energy curves for (Lambda+S) states and the corresponding spectroscopic properties are derived that allows for an unambiguous assignment of the only spectrum known experimentally as due to a spin-forbidden X (2)Pi-a (4)Sigma(-) transition, and not a A (2)Pi-X (2)Pi transition as assumed so far. For the bound excited doublets, yet unknown experimentally, this study is the first theoretical characterization of their spectroscopic properties. Also the spin-orbit coupling constant function for the X (2)Pi state is derived as well as the spin-orbit coupling matrix element between the X (2)Pi and a (4)Sigma(-) states. Dipole moment functions and vibrationally averaged dipole moments show SeF to be a very polar species. An overview of the lowest-lying spin-orbit (Omega) states completes this description. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3426315]
Resumo:
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3615545]
Resumo:
The effect of binding Tb(3+) to sodium taurocholate aggregates containing polyaromatic hydrocarbon guests was examined using pyrene and 1-ethylnaphthalene as guests that bind to the primary aggregate, and 1-naphthyl-1-ethanol as a secondary aggregate guest. Time-resolved fluorescence quenching studies were used to study the binding site properties, while laser flash photolysis quenching studies provided information on the dynamics of the guest-aggregate system. Both the primary and secondary aggregate binding sites became more compact in the presence of bound Tb(3+), while only the primary aggregate became more accessible to anionic molecules. The binding dynamics for the guest-primary aggregate system became faster when Tb(3+) was bound to the aggregate. In contrast, for the guest-secondary aggregate the presence of Tb(3+) resulted in a small decrease in the dissociation rate constant. The influence of bound Tb(3+) on the primary and secondary bile salt aggregates is significantly different, which affects how these aggregates can be used as supramolecular host systems to modify guest reactivity.
Resumo:
Background: The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results: In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 +/- 0.2) x 10(6) M(-1) and resulted in a dissociation constant (KD) of (0.7 +/- 0.1) x 10(-6) M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion: Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions.
Resumo:
The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 x 10(6) Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (D-h) of 27 +/- 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller D-h of 10 +/- 1 nm. The decrease in D-h suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DILS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25 degrees C and 38 degrees C. At 25 degrees C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38 degrees C is faster than that at 25 degrees C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25 degrees C. Autoxiclation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.
Resumo:
The aim of this Study was to compare the learning process of a highly complex ballet skill following demonstrations of point light and video models 16 participants divided into point light and video groups (ns = 8) performed 160 trials of a pirouette equally distributed in blocks of 20 trials alternating periods of demonstration and practice with a retention test a day later Measures of head and trunk oscillation coordination d1 parity from the model and movement time difference showed similarities between video and point light groups ballet experts evaluations indicated superiority of performance in the video over the point light group Results are discussed in terms of the task requirements of dissociation between head and trunk rotations focusing on the hypothesis of sufficiency and higher relevance of information contained in biological motion models applied to learning of complex motor skills
Resumo:
A novel trypsin inhibitor (PFTI) was isolated from Plathymenia foliolosa (Benth.) seeds by gel filtration chromatography on a Sephadex G-100, DEAE-Sepharose, and trypsin-Sepharose columns. By SDS-PAGE, PFTI yielded a single band with a M(r) of 19 kDa. PFTI inhibited bovine trypsin and bovine chymotrypsin with equilibrium dissociation constants (K(i)) of 4 x 10(-8) and 1.4 x 10(-6) M, respectively. PFTI retained more than 50% of activity at up to 50 degrees C for 30 min, but there were 80 and 100% losses of activity at 60 and 70 degrees C, respectively. DTT affected the activity or stability of PFTI. The N-terminal amino acid sequence of PFTI showed a high degree of homology with various members of the Kunitz family of inhibitors. Anagasta kuehniella is found worldwide; this insect attacks stored grains and products of rice, oat, rye, corn, and wheat. The velvet bean caterpillar (Anticarsia gemmatalis) is considered the main defoliator pest of soybean in Brazil. Diatraea saccharalis, the sugar cane borer, is the major pest of sugar cane crops, and its caterpillar-feeding behavior, inside the stems, hampers control. PFTI showed significant inhibitory activity against trypsin-like proteases present in the larval midguts on A. kuehniella and D. saccharalis and could suppress the growth of larvae.
Resumo:
Anatoxin-a(s) is a potent irreversible inhibitor of the enzyme acetylcholinesterase with a unique N-hydroxyguanidine methylphosphate ester chemical structure. Determination of this toxin in environmental samples is hampered by the lack of specific methods for its detection. Using the toxic strain of Anabaena lemmermani PH-160 B as positive control, the fragmentation characteristics of anatoxin-a(s) under collision-induced dissociation conditions have been investigated and new LC-MS/MS methods proposed. Recommended ion transitions for correct detection of this toxin are 253 > 58, 253 > 159, 235 > 98 and 235 > 96. Chromatographic separation is better achieved under HILIC conditions employing a ZIC-HILIC column. This method was used to confirm for the first time the production of anatoxin-a(s) by strains of Anabaena oumiana ITEP-025 and ITEP-026. Considering no standard solutions are commercially available, our results will be of significant use for the correct identification of this toxin by LC-MS/MS. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The polymetallic [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru( bpy)(2)Cl](PF(6))(2) complex (bpy = 2,2`-bipyridine, BPE = trans- 1,2-bis(4-pyridil) ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru(3)O] moiety with a [ Ru( bpy) 2( BPE) Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru(bpy)(2)Cl] (2+) doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)(2)(BPE)] charge-transfer bands and to the [Ru(3)O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at - 1.07 V, 0.13 V, 1.17 V, 2.91 V and - 1.29 V (vs SHE) assigned to the [Ru(3)O](-1/0/+ 1/+ 2/+3) and to the bpy (0/-1) redox processes; also a wave is observed at 0.96 V, assigned to the Ru (+2/+ 3) pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the pi-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.
Resumo:
Cylindrospermopsin (CYN) belongs to a group of toxins produced by several strains of freshwater cyanobacteria. It is a compact zwitterionic molecule composed of a uracil section and a tricyclic guanidinium portion with a primarily hepatotoxic effect. Using low multi-stage and high-resolution mass spectrometry, the gas-phase reactions of this toxin have been investigated. Our data show that collision-induced dissociation (CID) spectra of CYN are dominated by neutral losses, and three major initial fragmentation pathways are clearly distinguishable. Interestingly, comparative analysis of protonated and cationizated molecules showed a significant difference in the balance of the SO(3) and terminal ring elimination. These data indicate that the differential ion mobility of H(+), Li(+), Na(+) and K(+) leads to different fragmentation pathways, giving rise to mass spectra with different profiles. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
This paper reports theoretical and experimental studies of gas-phase fragmentation reactions of four naturally occurring isoflavones. The samples were analyzed in negative ion mode by direct infusion in ESI-QqQ, ESI-QqTOF and ESI-Orbitrap systems. The MS/MS and MS(n) spectra are in agreement with the fragmentation proposals and high-resolution analyses have confirmed the formulae for each ion observed. As expected, compounds with methoxyl aromatic substitution have showed a radical elimination of center dot CH(3) as the main fragmentation pathway. A second radical loss (center dot H) occurs as previously observed for compounds which exhibit a previous homolytic center dot CH(3) cleavage (radical anion) and involves radical resonance to stabilize the anion formed. However, in this study we suggest another mechanism for the formation of the main ions, on the basis of the enthalpies for each species. Compounds without methoxy substituent dissociate at the highest energies and exhibit the deprotonated molecule as the most intense ion. Finally, energy-resolved experiments were carried out to give more details about the gas-phase dissociation reaction of the isoflavones and the results are in agreement with the theoretical approaches. Copyright (C) 2011 John Wiley & Sons, Ltd.