17 resultados para Different temperatures
Resumo:
MgO based refractory castables draw wide technological interest because they have the versatility and installation advantages of monolithic refractories with intrinsic MgO properties, such as high refractoriness and resistance to basic slag corrosion. Nevertheless, MgO easily reacts with water to produce Mg(OH)(2), which is followed by a large volumetric expansion, limiting its application in refractory castables. In order to develop solutions to minimize this effect, a better understanding of the main variables involved in this reaction is required. In this work, the influence of temperature, as well as the impact of the chemical equilibrium shifting (known as the common-ion effect), on MgO hydration was evaluated. Ionic conductivity measurements at different temperatures showed that the MgO hydration reaction is accelerated with increasing temperature. Additionally, different compounds were added to evaluate their influence on the reaction rate. Among them, CaCl(2) delayed the reaction, whereas KOH showed an opposite behavior. MgCl(2) and MgSO(4) presented similar results and two other distinct effects, reaction delay and acceleration, which depended on their concentration in the suspensions. The results were evaluated by considering the kinetics and the thermodynamics of the reaction, and the mechanical damages in the samples that was caused by the hydration reaction. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Single-phase perovskite structure Pb(1-x)Ba(x)TiO(3) thin films (x = 0.30, 0.50 and 0.70) were deposited on Pt/Ti/SiO(2)/Si substrates by the spin-coating technique. The dielectric study reveals that the thin films undergo a diffuse type ferroelectric phase transition, which shows a broad peak. An increase of the diffusivity degree with the increasing Barium contents was observed, and it was associated to a grain decrease in the studied composition range. The temperature dependence of the phonon frequencies was used to characterize the phase transition temperatures. Raman modes persist above tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of breakdown of the local cubic symmetry by chemical disorder. The absence of a well-defined transition temperature and the presence of broad bands in some interval temperature above FE-PE phase transition temperature Suggested a diffuse type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. The leakage Current density of the PBT thin films was studied at different temperatures and the data follow the Schottky emission model. Through this analysis the Schottky barrier height values 0.75, 0.53 and 0.34 eV were obtained to the PBT70, PBT50 and PBT30 thin films, respectively. (C) 2008 Elsevier Ltd. All rights reserved.