126 resultados para Damage Localization
Resumo:
The transition of plasmons from propagating to localized state was studied in disordered systems formed in GaAs/AlGaAs superlattices by impurities and by artificial random potential. Both the localization length and the linewidth of plasmons were measured by Raman scattering. The vanishing dependence of the plasmon linewidth on the disorder strength was shown to be a manifestation of the strong plasmon localization. The theoretical approach based on representation of the plasmon wave function in a Gaussian form well accounted for by the obtained experimental data.
Resumo:
The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation-LDA) and semilocal (generalized gradient approximation-GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA + U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA + U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.
Resumo:
The survey is aimed at critically reviewing information on the UVA-mediated oxidative reactions to cellular components with emphasis on DNA as the result of mostly photosensitized pathways. It appears clearly that UVA radiation is relatively much more efficient than UVB photons in inducing oxidative processes. The main UVA-induced oxidative degradation pathways of DNA are reported and discussed mechanistically. They are mostly rationalized in terms of a major contribution of singlet molecular oxygen ((1)O(2)) and to a lesser extent of hydroxyl radical ((center dot)OH), that in the latter case originates from Fenton-type reactions. This leads to the predominant formation of 8-oxo-7,8-dihydroguanine together with smaller amounts of oxidized pyrimidine bases and DNA strand breaks in UVA-irradiated cells.
Resumo:
DNA damage was investigated in the presence of sulfite, dissolved oxygen and cobalt(II) complexes with glycylglycylhistidine, glycylhistidyllysine, glycylglycyltyrosylarginine and tetraglycine. These studies indicated that only Co(II) complexed with glycylglycylhistidine (GGH) induced DNA strand breaks at low sulfite concentrations (1-80 mu M) via strong oxidants formed in the reaction. In the presence of the other complexes, some damage occurred only in the presence of high sulfite concentrations (0.1-2.0 mM) after incubation for 4 h. In the presence of GGH, Co(II) and dissolved O(2), DNA damage must involve a reactive high-valent cobalt complex. The damaging effect was increased by adding S(IV), due to the oxysulfur radicals formed as intermediates in S(IV) autoxidation catalyzed by the complex. SO(3)(center dot)-S-, HO(center dot) and H(center dot) radicals were detected by EPR-spin trapping experiments with DMPO (5,5-dimethyl-1-pyrroline N-oxide). The results indicate that Co(II) binds O2 in the presence of GGH, and leads to the formation of a DMPO-HO(center dot) adduct without first forming free superoxide or hydroxyl radical, supporting the participation of a reactive high-valent cobalt complex.
Resumo:
A cyanobacterial mat colonizing the leaves of Eucalyptus grandis was determined to be responsible for serious damage affecting the growth and development of whole plants under the clonal hybrid nursery conditions. The dominant cyanobacterial species was isolated in BG-11 medium lacking a source of combined nitrogen and identified by cell morphology characters and molecular phylogenetic analysis (16S rRNA gene and cpcBA-IGS sequences). The isolated strain represents a novel species of the genus Brasilonema and is designated Brasilonema octagenarum strain UFV-E1. Thin sections of E. grandis leaves analyzed by light and electron microscopy showed that the B. octagenarum UFV-E1 filaments penetrate into the leaf mesophyll. The depth of infection and the mechanism by which the cyanobacterium invades leaf tissue were not determined. A major consequence of colonization by this cyanobacterium is a reduction in photosynthesis in the host since the cyanobacterial mats decrease the amount of light incident on leaf surfaces. Moreover, the cyanobacteria also interfere with stomatal gas exchange, decreasing CO2 assimilation. To our knowledge, this is the first report of an epiphytic cyanobacterial species causing damage to E. grandis leaves.
Resumo:
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p<0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p<0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright (C) 2010 John Wiley & Sons, Ltd.
Effect of eccentric contraction velocity on muscle damage in repeated bouts of elbow flexor exercise
Resumo:
Eccentric exercise induces muscle damage, but controversy exists concerning the effect of contraction velocity on the magnitude of muscle damage, and little is known about the effect of contraction velocity on the repeated-bout effect. This study examined slow (60 degrees.s(-1)) and fast (180 degrees.s(-1)) velocity eccentric exercises for changes in indirect markers of muscle damage following 3 exercise bouts that were performed every 2 weeks. Fifteen young men were divided into 2 groups based on the velocity of eccentric exercise: 7 in the Ecc60 (60 degrees.s(-1)) group, and 8 in the Ecc180 (180 degrees.s(-1)) group. The exercise consisted of 30 maximal eccentric contractions of the elbow flexors at each velocity, in which the elbow joint was forcibly extended from 60 degrees to 180 degrees (full extension) on an isokinetic dynamometer. Changes in maximal voluntary isometric contraction strength, range of motion, muscle soreness, and plasma creatine kinase activity before and for 4 days after the exercise were compared in the 2 groups using a mixed-model analysis (group x bout x time). No significant differences between groups were evident for changes in any variables following exercise bouts; however, the changes were significantly smaller (p < 0.05) after the second and third bouts than after the first bout. These results indicate that the contraction velocity does not influence muscle damage or the repeated-bout effect.
Resumo:
Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification
Resumo:
This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The paper discusses the effect of stress triaxiality on the onset and evolution of damage in ductile metals. A series of tests including shear tests and experiments oil smooth and pre-notched tension specimens wits carried Out for it wide range of stress triaxialities. The underlying continuum damage model is based oil kinematic definition of damage tensors. The modular structure of the approach is accomplished by the decomposition of strain rates into elastic, plastic and damage parts. Free energy functions with respect to fictitious undamaged configurations as well as damaged ones are introduced separately leading to elastic material laws which are affected by increasing damage. In addition, a macroscopic yield condition and a flow rule are used to adequately describe the plastic behavior. Numerical simulations of the experiments are performed and good correlation of tests and numerical results is achieved. Based oil experimental and numerical data the damage criterion formulated in stress space is quantified. Different branches of this function are taken into account corresponding to different damage modes depending oil stress triaxiality and Lode parameter. In addition, identification of material parameters is discussed ill detail. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A high nitrogen austenitic stainless steel (0.9wt% N) and an ordinary 304 austenitic stainless steel were submitted to cavitation-erosion tests in a vibratory apparatus operating at a frequency of 20 kHz. The high nitrogen stainless steel was obtained by high temperature gas nitriding a 1-mm thick strip of an UNS 31803 duplex stainless steel. The 304 austenitic stainless steel was used for comparison purposes. The specimens were characterized by scanning electron microscopy and Electron Back Scatter Diffraction. The surface of the cavitation damaged specimens was analyzed trying to find out the regions where cavitation damage occurred preferentially. The distribution of sites where cavitation inception occurred was extremely heterogeneous, concentrating basically at (i) slip lines inside some grains and (ii) Sigma-3 coincidence site lattice (CSL) boundaries (twin boundaries). Furthermore, it was observed that the CE damage spread faster inside those grains which were more susceptible to damage incubation. The damage heterogeneity was addressed to plasticity anisotropy. Grains in which the crystallographic orientation leads to high resolved shear stress show intense damage at slip lines. Grain boundaries between grains with large differences in resolved shear stress where also intensely damaged. The relationship between crystallite orientation distributions, plasticity anisotropy and CE damage mechanisms are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sound source localization (SSL) is an essential task in many applications involving speech capture and enhancement. As such, speaker localization with microphone arrays has received significant research attention. Nevertheless, existing SSL algorithms for small arrays still have two significant limitations: lack of range resolution, and accuracy degradation with increasing reverberation. The latter is natural and expected, given that strong reflections can have amplitudes similar to that of the direct signal, but different directions of arrival. Therefore, correctly modeling the room and compensating for the reflections should reduce the degradation due to reverberation. In this paper, we show a stronger result. If modeled correctly, early reflections can be used to provide more information about the source location than would have been available in an anechoic scenario. The modeling not only compensates for the reverberation, but also significantly increases resolution for range and elevation. Thus, we show that under certain conditions and limitations, reverberation can be used to improve SSL performance. Prior attempts to compensate for reverberation tried to model the room impulse response (RIR). However, RIRs change quickly with speaker position, and are nearly impossible to track accurately. Instead, we build a 3-D model of the room, which we use to predict early reflections, which are then incorporated into the SSL estimation. Simulation results with real and synthetic data show that even a simplistic room model is sufficient to produce significant improvements in range and elevation estimation, tasks which would be very difficult when relying only on direct path signal components.
Resumo:
The physiological responses of sugarcane (Succharion officinarum L.) to oxidative stress induced by methyl viologen (paraquat) were examined with respect to photochemical activity, chlorophyll content, lipid peroxidation and superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. Thirty-day-old sugarcane plants were sprayed with 0, 2, 4, 6 and 8 mM methyl viologen (MV). Chlorophyll fluorescence was measured after 18 It and biochemical analyses were performed after 24 and 48 h. Concentrations of MV above 2 mM caused significant damage to photosystem II (PSII) activity. Potential and effective quantum efficiency of PSII and apparent electron transport rate were greatly reduced or practically abolished. Both chlorophyll and soluble protein contents steadily decreased with MV concentrations above 2 mM after 24 It of exposure, which became more pronounced after 48 It, achieving a 3-fold decrease. Insoluble protein contents were little affected by MV. Oxidative stress induced by MV was evidenced by increases in lipid peroxidation. Specific activity of SOD increased, even after 48 h of exposure to the highest concentrations of MV, but total activity on a fresh weight basis did not change significantly. Nondenaturing YAGE assayed with H2O2 and KCN showed that treatment with MV did not change Cu/Zn-SOD and MnSOD isoform activities. In contrast, APX specific activity increased at 2 mM MV but then dropped at higher doses. Oxidative damage induced by MV was inversely related to APX activity. It is suggested that the major MV-induced oxidative damages in sugarcane leaves were related to excess H2O2, probably in chloroplasts, caused by an imbalance between SOD and APX activities, in which APX was a limiting step. Reduced photochemical activity allowed the early detection of the ensuing oxidative stress. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Evaluation of damage caused on Coffea arabica by a population of Pratylenchus coffeae considered non-pathogenic on coffee Two greenhouse experiments were carried out in order to evaluate the damage caused on Arabica coffee (Coffea arabica) by an M(2) population of Pratylenchus coffeae, apparently non-pathogenic to coffee. Experiment 1, with `Catua Vermelho` coffee at stage of two leaf pairs and with the initial nematode densities (Pi) of 0; 333; 1,000; 3.000; and 9,000 per plant, demonstrated that M(2) can damage young coffee plants, although it is unable to reproduce on coffee roots. Experiment 2, with the same coffee cultivar and nematode densities, but with plants at stage of six leaf pairs, showed that the M2 population was unable to cause damage. Therefore, it was established that M(2) is a population of P. coffeae without reproduction on Arabica coffee, which causes damage only in the first generation on young coffee below stages of six leaf pairs.