154 resultados para DNA amplification
Resumo:
A novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 0.6 mu L of blood at a concentration which is suitable for PCR amplification. In addition, the technique presented here requires inexpensive, common laboratory equipment, making it easily adopted for both clinical point-of-care applications and on-site forensic sample analysis.
Resumo:
This study outlines the quantification of low levels of Alicyclobacillus acidoterrestris in pure cultures, since this bacterium is not inactivated by pasteurization and may remain in industrialized foods and beverages. Electroconductive polymer-modified fluorine tin oxide (FTO) electrodes and multiple nanoparticle labels were used for biosensing. The detection of A. acidoterrestris in pure cultures was performed by reverse transcription polymerase chain reaction (RT-PCR) and the sensitivity was further increased by asymmetric nested RT-PCR using electrochemical detection for quantification of the amplicon. The quantification of nested RT-PCR products by Ag/Au-based electrochemical detection was able to detect 2 colony forming units per mL (CFU mL(-1)) of spores in pure culture and low detection and quantification limits (7.07 and 23.6 nM, respectively) were obtained for the target A. acidoterrestris on the electrochemical detection bioassay.
Resumo:
We aimed to study patterns of variation and factors influencing the evolutionary dynamics of a satellite DNA, pBuM, in all seven Drosophila species from the buzzatii cluster (repleta group). We analyzed 117 alpha pBuM-1 (monomer length 190 bp) and 119 composite alpha/beta (370 bp) pBuM-2 repeats and determined the chromosome location and long-range organization on DNA fibers of major sequence variants. Such combined methodologies in the study of satDNAs have been used in very few organisms. In most species, concerted evolution is linked to high copy number of pBuM repeats. Species presenting low-abundance and scattered distributed pBuM repeats did not undergo concerted evolution and maintained part of the ancestral inter-repeat variability. The alpha and alpha/beta repeats colocalized in heterochromatic regions and were distributed on multiple chromosomes, with notable differences between species. High-resolution FISH revealed array sizes of a few kilobases to over 0.7 Mb and mutual arrangements of alpha and alpha/beta repeats along the same DNA fibers, but with considerable changes in the amount of each variant across species. From sequence, chromosomal and phylogenetic data, we could infer that homogenization and amplification events involved both new and ancestral pBuM variants. Altogether, the data on the structure and organization of the pBuM satDNA give insights into genome evolution including mechanisms that contribute to concerted evolution and diversification.
Resumo:
BACKGROUND: Chagas` disease reactivation (CDR) after heart transplantation is characterized by relapse of the infectious disease, with direct detection of Trypanosoma cruzi parasites in blood, cerebrospinal fluid, or tissues. CDR affecting the myocardium induces lymphocytic myocarditis and should be distinguished from acute cellular rejection in endomyocardial biopsy (EMB) specimens. METHODS: We performed retrospectively qualitative polymerase chain reaction for T cruzi DNA using 2 sets of primers targeting nuclear DNA (nDNA) or kinetoplast DNA (kDNA) in 61 EMB specimens of 11 chagasic heart transplant recipients who presented with CDR. Thirty-five EMB specimens were obtained up to 6 months before (pre-CDR group) and 26 up to 2 years after the diagnosis of CDR. The control group consisted of 6 chagasic heart transplant recipients with 18 EMB specimens who never experienced CDR. RESULTS: Amplification of kDNA occurred in 8 of 35 (22.9%) EMB specimens of the pre-CDR group, in 5 of 18(27.8%) of the control group, and in 17 of 26(65.4%) EMB specimens obtained after the successful treatment of CDR. Amplification of nDNA occurred in 3 of 35 (8.6%) EMB specimens of the pre-CDR group, 0 of 18 (0%) of the control group, and 6 of 26 (23.1%) EMB specimens obtained after the successful treatment of CDR. CONCLUSIONS: Amplification of kDNA in EMB specimens is not specific for the diagnosis of CDR, occurring also in patients with no evidence of CDR (control group). However, amplification of nDNA occurred in a few EMB specimens obtained before CDR, but in none of the control group specimens. Qualitative PCR for T cruzi DNA in EMB specimens should not be used as a criterion for cure of CDR because it can persist positive despite favorable clinical evolution of the patients. J Heart Lung Transplant 2011;30:799-804 (C) 2011 International Society for Heart and Lung Transplantation. All rights reserved.
Resumo:
The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Gene amplification occurs in Bradysia hygida salivary glands, at the end of the fourth larval instar. The hormone 20-hydroxyecdysone (20E) triggers this process, which results in DNA puff formation. Amplified genes are activated in two distinct groups. The activity of the first group is dependent on high levels of 20E, while the second group needs low hormone levels. Consequently, the salivary glands of B. hygida constitute an interesting biological model to study how 20E, and its receptors, affect gene amplification and activity. We produced polyclonal antibodies against B. hygida EcR (BhEcR). In western blots a polypeptide of about 66 kDa was detected in salivary gland extracts. The antibodies were also used for indirect immune-localization of BhEcR in polytene chromosomes. RNA-polymerase II was also immune-detected. We did not detect the receptor in chromosome C where the first and second groups of DNA puffs form during DNA puff anlage formation, but it was present during puff expansion. During the active phase of both groups of DNA puffs, RNA polymerase II co-localized with BhEcR. After puff regression, these antigens were not detected. Apparently, EcR plays a direct role in the transcription of amplified genes, but its role in gene amplification remains enigmatic.
Resumo:
We report a case of acute monoblastic leukemia showing a jumping translocation with the MLL gene in a 17-year-old male. Classic cytogenetic and spectral karyotyping revealed a complex karyotype, and fluorescence in situ hybridization (FISH) demonstrated amplification of the MLL gene followed by translocation to chromosomes 15q, 17q, and 19q. In addition, molecular analyses showed a high expression of AURKA and AURKB genes. It is already known that overexpression of Aurora kinases is associated with chromosomal instability and poor prognosis. The formation of jumping translocations is a rare cytogenetic event and there is evidence pointing toward preferential involvement of the heterochromatin region of donor chromosomes and the telomere ends of recipient chromosomes. Jumping translocation with the MLL gene rearrangement is an uncommon phenomenon reported in leukemia cytogenetics. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Concurrent deletion at 1p/19q is a common signature of oligodendrogliomas, and it may, be identified in low-grade tumours (grade II) suggesting it represents an early event in the development of these brain neoplasms. Additional non-random changes primarily involve CDKN2A, PTEN and EGFR. Identification of all of these genetic changes has become an additional parameter in the evaluation of the clinical patients` prognosis, including good response to conventional chemotherapy. Multiple ligation-dependent probe amplification (MLPA) analysis is a new methodology that allows an easy identification of the oligodendrogliomas` abnormalities in a single step. No need of the respective constitutional DNA from each patient is another advantage of this method. We used MLPA kits P088 and P105 to determine the molecular characteristics of a series of 40 oligodendrogliomas. Deletions at I p and 19q were identified in 45% and 65% of cases, respectively. Alterations of EGFR, CDKN2A, ERBB2, PTEN and TP53 were also identified in variable frequencies among 7% to 35% of tumours. These findings demonstrate that MLPA is a reliable technique to the detection of molecular genetic changes in oligodendrogliomas.
Resumo:
The use of scat surveys to obtain DNA has been well documented in temperate areas, where DNA preservation may be more effective than in tropical forests. Samples obtained in the tropics are often exposed to high humidity, warm temperatures, frequent rain and intense sunlight, all of which can rapidly degrade DNA. Despite these potential problems, we demonstrate successful mtDNA amplification and sequencing for faeces of carnivores collected in tropical conditions and quantify how sample condition and environmental variables influence the success of PCR amplification and species identification. Additionally, the feasibility of genotyping nuclear microsatellites from jaguar (Panthera onca) faeces was investigated. From October 2007 to December 2008, 93 faecal samples were collected in the southern Brazilian Amazon. A total of eight carnivore species was successfully identified from 71% of all samples obtained. Information theoretic analysis revealed that the number of PCR attempts before a successful sequence was an important negative predictor across all three responses (success of species identification, success of species identification from the first sequence and PCR amplification success), whereas the relative importance of the other three predictors (sample condition, season and distance from forest edge) varied between the three responses. Nuclear microsatellite amplification from jaguar faeces had lower success rates (15-44%) compared with those of the mtDNA marker. Our results show that DNA obtained from faecal samples works efficiently for carnivore species identification in the Amazon forest and also shows potential for nuclear DNA analysis, thus providing a valuable tool for genetic, ecological and conservation studies.
Resumo:
Identification of all important community members as well as of the numerically dominant members of a community are key aspects of microbial community analysis of bioreactor samples. A systematic study was conducted with artificial consortia to test whether denaturing gradient gel electrophoresis (DGCE) is a reliable technique to obtain such community data under conditions where results would not be affected by differences in DNA extraction efficiency from cells. A total of 27 consortia were established by mixing DNA extracted from Escherichia coli K12, Burkholderia cepacia and Stenotrophomonas maltophilia in different proportions. Concentrations of DNA of single organisms in the consortia were either 0.04, 0.4 or 4 ng/mu l. DGGE-PCR of genomic DNA with primer sets targeted at the V3 and V6-V8 regions of the 16S rDNA failed to detect the three community members in only 7% of consortia, but provided incorrect information about dominance or co-dominance for 85% and 89% of consortia with the primer sets for the V6-V8 and V3 regions, respectively. The high failure rate in detection of dominant B. cepacia with the primers for the V6-V8 region was attributable to a single nucleoticle primer mismatch in the target sequences of both, the forward and reverse primer. Amplification bias in PCR of E. coli and S. maltophilia for the V6-V8 region and for all three organisms for the V3 region occurred due to interference of genomic DNA in PCR-DGGE, since a nested PCR approach, where PCR-DGGE was started from mixtures of 16S rRNA genes of the organisms, provided correct information about the relative abundance of original DNA in the sample. Multiple bands were not observed in pure culture amplicons produced with the V6-V8 primer pair, but pure culture V3 DGGE profiles of E. coli, S. maltophilia and B. cepacia contained 5, 3 and 3 bands, respectively. These results demonstrate DGGE was suitable for identification of all important community members in the three-membered artificial consortium, but not for identification of the dominant organisms in this small community. Multiple DGGE bands obtained for single organisms with the V3 primer pair could greatly confound interpretation of DGGE profiles. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The recovery and stability of DNA for the detection and genotyping of HPV in UCM-containing specimens, after exposure to denaturing reagents and stored for up to 2 years were evaluated. Samples were collected from 60 women who had cervical cytology specimens harboring cervical intraepithelial neoplasia (CIN) 2 or 3. All samples were stored in UCM and had been frozen at -20 degrees C following the addition of the denaturing reagent (sodium hydroxide) and the removal of the aliquot required for Hybrid Capture 2 testing for the identification of HPV DNA. The samples had been stored for 6, 12 and 24 months (20 samples for each storage time). HPV DNA extraction was performed according to a protocol designed specifically and the presence and quality of DNA was confirmed by human P-globin detection using the consensus primers G73 and G74. HPV DNA was amplified using the consensus primers PGMY09 and PGMY11, and reverse line-blot hybridization was used to detect type-specific amplicons for 37 HPV types. The DNA extracted from the denatured specimen was recovered in 57/60 (95%) of the samples. HPV DNA was detected in 56/57 (98%) of the recovered samples. Twenty-six of the 56 samples recovered (48%) were genotyped successfully. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: This study evaluated the quality of DNA obtained from stored human saliva and its applicability to human identification. METHODS: The saliva samples of 20 subjects, collected in the form of saliva in natura and from mouth swabs and stored at -20ºC, were analyzed. After 7 days, the DNA was extracted from the 40 saliva samples and subjected to PCR and electrophoresis. After 180 days, the technique was repeated with the 20 swab samples. RESULTS: The first-stage results indicated that DNA was successfully extracted in 97.5% of reactions, 95% of saliva in natura and 100% of swab saliva samples, with no statistically significant difference between the forms of saliva. In the second phase, the result was positive for all 20 analyzed samples (100%). Subsequently, in order to analyze the quality of the DNA obtained from human saliva, the SIX3-2 gene was tested on the 20 mouth swab samples, and the PCR products were digested using the MbO1 restriction enzyme to evaluate polymorphisms in the ADRA-2 gene, with positive results for most samples. CONCLUSION: It was concluded that the quantity and quality of DNA from saliva and the techniques employed are adequate for forensic analysis of DNA.
Resumo:
Melatonin (MEL) acts as a powerful scavenger of free radicals and direct gonadal responses to melatonin have been reported in the literature. Few studies, however, have evaluated the effect of MEL during in vitro maturation (IVM) on bovine embryos. This study tested the addition of MEL to maturation medium (MM) with no gonadotropins on nuclear maturation and embryo development rates and the incidence of DNA damage in resulting embryos. Cumulus-oocyte complexes were aspirated from abattoir ovaries and cultured in MM (TCM-199 medium supplemented with 10% fetal calf serum - FCS) at 39ºC and 5% CO2 in air. After 24 hours of culture in MM with 0.5 µg mL-1 FSH and 5.0 µg mL-1 LH; 10-9 M MEL) or 10-9 M MEL, 0.5 µg mL-1 FSH and 5.0 µg mL-1 LH, the oocytes were stained with Hoechst 33342 to evaluate nuclear maturation rate. After in vitro fertilization and embryo culture, development rates were evaluated and the blastocysts were assessed for DNA damage by Comet assay. There was no effect of melatonin added to the MM, alone or in combination with gonadotropins, on nuclear maturation, cleavage and blastocyst rates. These rates ranged between 88% to 90%, 85% to 88% and 42% to 46%, respectively. The extent of DNA damage in embryos was also not affected by MEL supplementation during IVM. The addition of 10-9 M MEL to the MM failed to improve nuclear maturation and embryo development rates and the incidence of DNA damage in resulting embryos, but was able to properly substitute for gonadotropins during IVM.
Resumo:
More than 90% of birds are socially monogamous, although genetic studies indicate that many are often not sexually monogamous. In the present study, DNA fingerprinting was used to estimate the genetic relationships between nestlings belonging to the same broods to evaluate the mating system in the socially monogamous macaw, Ara ararauna. We found that in 10 of 11 broods investigated, the nestlings showed genetic similarity levels congruent with values expected among full-sibs, suggesting that they shared the same parents. However, in one brood, the low genetic similarity observed between nestlings could be a result of intraspecific brood parasitism, intraspecific nest competition or extra-pair paternity. These results, along with available behavioral and life-history data, imply that the blue-and-yellow macaw is not only socially, but also genetically monogamous. However, the occurrence of eventual cases of extra-pair paternity cannot be excluded.