291 resultados para DENTAL MATERIALS
Resumo:
This study evaluated the effects of fluoride-containing solutions on the surface of commercially pure titanium (CP Ti) obtained by casting. CP Ti specimens were fabricated and randomly assigned to 5 groups (n=10): group 1: stored in distilled water at 37 ± 1ºC; group 2: stored in distilled water at 37 ± 1ºC and daily immersed in 0.05% NaF for 3 min; group 3: stored in distilled water at 37 ± 1ºC and daily immersed in 0.2% NaF for 3 min; group 4: stored in distilled water at 37 ± 1ºC; and immersed in 0.05% NaF every 15 days for 3 min; and group 5: stored in distilled water at 37 ± 1ºC and immersed in 0.2% NaF every 15 days for 3 min. Surface roughness was measured with a profilometer immediately after metallographic polishing of the specimens (T0) and at 15-day intervals until completing 60 days of experiment (T15, T30, T45, T60). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) in surface roughness among the solutions. In conclusion, fluoride-containing solutions (pH 7.0) used as mouthwashes do not damage the surface of cast CP Ti and can be used by patients with titanium-based restorations.
Resumo:
The aim of this in vitro study was to evaluate the tensile bond strength of a self-etching adhesive system to three different dentinal substrates. Primary molar teeth that had been recently exfoliated (RE), with unknown time of exfoliation (UT), and extracted due to prolonged retention (PR) were used for this investigation. Ten primary molar teeth of each group were cut in the middle following the mesio-distal direction, creating a total of twenty specimens per group. The specimens were included in acrylic resin and had a flat dentin surface exposed. The self-etching adhesive system was applied to this surface and a 3-millimeter high cone with diameter of 2 mm in the adhesion area was constructed using composite resin. The specimens were stored in distilled water at 37ºC for 24 hours. Fifteen specimens of each substrate were used for the tensile bond test (n = 15) and 5 had the interface analyzed by scanning electron microscopy (SEM). The data was examined by one-way ANOVA and presented no significant differences between groups (p = 0.5787). The mean values obtained for RE, UT and PR were 18.39 ± 9.70, 19.41 ± 7.80, and 23.30 ± 9.37 MPa, respectively. Any dentinal substrates of primary teeth studied are safe for tensile bond strength tests with adhesive systems.
Resumo:
The use of composite resins in dentistry is well accepted for restoring anterior and posterior teeth. Many polishing protocols have been evaluated for their effect on the surface roughness of restorative materials. This study compared the effect of different polishing systems on the surface roughness of microhybrid composites. Thirty-six specimens were prepared for each composite $#91;Charisma® (Heraeus Kulzer), Fill Magic® (Vigodent), TPH Spectrum® (Dentsply), Z100® (3M/ESPE) and Z250® (3M/ESPE)] and submitted to surface treatment with Enhance® and PoGo® (Dentsply) points, sequential Sof-Lex XT® aluminum oxide disks (3M/ESPE), and felt disks (TDV) combined with Excel® diamond polishing paste (TDV). Average surface roughness (Ra) was measured with a mechanical roughness tester. The data were analyzed by two-way ANOVA with repetition of the factorial design and the Tukey-Kramer test (p<0.01). The F-test result for treatments and resins was high (p<0.0001 for both), indicating that the effect of the treatment applied to the specimen surface and the effect of the type of resin on surface roughness was highly significant. Regarding the interaction between polishing system and type of resin used, a p value of 0.0002 was obtained, indicating a statistically significant difference. A Ra of 1.3663 was obtained for the Sof-Lex/TPH Spectrum interaction. In contrast, the Ra for the felt disk+paste/Z250 interactions was 0.1846. In conclusion, Sof-Lex polishing system produced a higher surface roughness on TPH Spectrum resin when compared to the other interactions.
Resumo:
The objective of this study was to evaluate the flexural strength (σf) and hardness (H) of direct and indirect composites, testing the hypotheses that direct resin composites produce higher σf and H values than indirect composites and that these properties are positively related. Ten bar-shaped specimens (25 mm x 2 mm x 2 mm) were fabricated for each direct [D250 - Filtek Z250 (3M-Espe) and D350 - Filtek Z350 (3M-Espe)] and indirect [ISin - Sinfony (3M-Espe) and IVM - VitaVM LC (Vita Zahnfabrik)] materials, according to the manufacturer's instructions and ISO4049 specifications. The σf was tested in three-point bending using a universal testing machine (EMIC DL 2000) at a crosshead speed of 0.5 mm/min (ISO4049). Knoop hardness (H) was measured on the specimens' fragments resultant from the σf test and calculated as H = 14.2P/l², where P is the applied load (0.1 kg; dwell time = 15 s) and l is the longest diagonal of the diamond shaped indent (ASTM E384). The data were statistically analyzed using Anova and Tukey tests (α = 0.05). The mean σf and standard deviation values (MPa) and statistical grouping were: D250 - 135.4 ± 17.6a; D350 - 123.7 ± 11.1b; ISin - 98.4 ± 6.4c; IVM - 73.1 ± 4.9d. The mean H and standard deviation values (kg/mm²) and statistical grouping were: D250 - 98.12 ± 1.8a; D350 - 86.5 ± 1.9b; ISin - 28.3 ± 0.9c; IVM - 30.8 ± 1.0c. The direct composite systems examined produce higher mean σf and H values than the indirect composites, and the mean values of these properties were positively correlated (r = 0.91), confirming the study hypotheses.
Resumo:
Although titanium and Ti-6Al-4V alloy have been widely used as dental materials, possible undesirable effects such as cytotoxic reactions and neurological disorder due to metal release led to the development of more corrosion resistant and V and Al free titanium alloys, containing Nb, Zr, Mo and Ta atoxic elements. Fluoride containing products used in the prevention of plaque formation and dental caries can affect the stability of the passive oxide films formed on the Ti alloys. In this work, the corrosion behaviour of the new Ti-23Ta alloy has been evaluated in artificial saliva of different pH and fluoride concentration using electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy study showed that the oxide film formed on the alloy in artificial saliva consists of an inner compact film and an outer porous layer. The corrosion resistance of Ti-23Ta alloy which is reduced by increasing F concentration or decreasing pH is related to the resistance of the inner compact layer. The presence of fluoride and low pH of the saliva enhance the porosity of the oxide film and its dissolution.
Resumo:
Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 mu m aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: I mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey`s test (alpha = 0.05). Results. The mean flexural strength values for the ceramic-gold alloy combination (55 +/- 7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32 +/- 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 +/- 6.6 and 53 +/- 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 +/- 6.8 and 29 +/- 6.8 MPa, respectively) compared to the control group (58 +/- 7.8 and 39 SA MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey`s test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To examine the effect of prolonged application time on the early and 3-year resin-dentin microtensile bond strength. Methods. Water/ethanol (Single Bond [SB]) and acetone-based systems (One Step [OS]) were employed. A flat superficial dentin surface was exposed in third human molars by wet abrasion. The adhesives were applied to a delimited area of 52 mm(2) on wet surfaces, for 40, 90, 150 and 300s. Four teeth were assigned for each experimental condition. Composite build-ups were constructed incrementally After water storage at 37 degrees C for 24 h, teeth were sectioned to obtain sticks with cross-sectional areas of 0.8 mm(2) to be tested in tension (0.5 mm/min) either immediately (IM) or after 3 years (3Y) of water storage. The microtensile bond strength (mu TBS) values were analyzed by two way repeated measures ANOVA and Tukey`s test (alpha = 0.05). Results. The 90- and 150-s groups achieved the highest IM mu TBS for OS (p < 0.01). For SB, the highest IM mu TBS values were observed after 300-s application (p < 0.01). Significant decreases in mu TBS were observed for OS in the 40- and 90-s groups after 3Y, except for the 150-s group. With regard to SB, after 3Y significant drops in mu TBS values were observed for the 40- and 150-s groups, except for the 300-s group. Significance. Prolonged application times can increase the immediate LTBS of two-step etch-and-rinse adhesive systems and make the adhesive layer more stable over time. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites
Resumo:
Objective. To compare currently available low-shrinkage composites with others regarding polymerization stress, volumetric shrinkage (total and post-gel), shrinkage rate and elastic modulus. Methods. Seven BisGMA-based composites (Durafill/DU, Filtek Z250/FZ, Heliomolar/HM, Aelite LS Posterior/AP, Point 4/P4, Filtek Supreme/SU, ELS/EL), a silorane-based (Filtek LS, LS), a urethane-based (Venus Diamond, VD) and one based on a dimethacrylate-derivative of dimer acid (N`Durance, ND) were tested. Polymerization stress was determined in 1-mm high specimens inserted between two PMMA rods attached to a universal testing machine. Total volumetric shrinkage was measured using a mercury dilatometer. Maximum shrinkage rate was used as a parameter of the reaction speed. Post-gel shrinkage was measured using strain-gages. Elastic modulus was obtained by three-point bending. Data were submitted to one-way ANOVA/Tukey test (p = 0.05), except for elastic modulus (Kruskal-Wallis). Results. Composites ranked differently for total and post-gel shrinkage. Among the materials considered as ""low-shrinkage"" by the respective manufacturers, LS, EL and VD presented low post-gel shrinkage, while AP and ND presented relatively high values. Polymerization stress showed a strong correlation with post-gel shrinkage except for LS, which presented high stress. Elastic modulus and shrinkage rate showed weak relationships with polymerization stress. Significance. Not all low-shrinkage composites demonstrated reduced polymerization shrinkage. Also, in order to effectively reduce polymerization stress, a low post-gel shrinkage must be associated to a relatively low elastic modulus. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives To characterize the properties of dentin matrix treated with two proanthocyanidin rich cross-linking agents and their effect on dentin bonded interfaces. Methods Sound human molars were cut into 0.5mm thick dentin slabs, demineralized and either treated with one of two cross-linking agents (grape seedGSE and cocoa seedCOE extracts) or left untreated. The modulus of elasticity of demineralized dentin was assessed after 10 or 60min and the swelling ratio after 60min treatment. Bacterial collagenase was also used to assess resistance to enzymatic degradation of samples subjected to ultimate tensile strength. The effect of GSE or COE on the resindentin bond strength was evaluated after 10 or 60min of exposure time. Data were statistically analyzed at a 95% confidence interval. Results Both cross-linkers increased the elastic modulus of demineralized dentin as exposure time increased. Swelling ratio was lower for treated samples when compared to control groups. No statistically significant changes to the UTS indicate that collagenase had no effect on dentin matrix treated with either GSE or COE. Resindentin bonds significantly increased following treatment with GSE regardless of the application time or adhesive system used. Significance Increased mechanical properties and stability of dentin matrix can be achieved by the use of PA-rich collagen cross-linkers most likely due to the formation of a PAcollagen complex. The short term resindentin bonds can be improved after 10min dentin treatment.(C) 2010 Academy of Denta lMaterials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. This study evaluated the effect of composite pre-polymerization temperature and energy density on the marginal adaptation (MA), degree of conversion (DC), flexural strength (FS), and polymer cross-linking (PCL) of a resin composite (Filtek Z350, 3M/ESPE). Methods. For MA, class V cavities (4mmx2mmx2mm) were prepared in 40 bovine incisors. The adhesive system Adper Single Bond 2 (3M/ESPE) was applied. Before being placed in the cavities, the resin composite was either kept at room-temperature (25 degrees C) or previously pre-heated to 68 degrees C in the Calset (TM) device (AdDent Inc., Danbury, CT, USA). The composite was then light polymerized for 20 or 40s at 600mW/cm(2) (12 or 24 J/cm(2), respectively). The percentage of gaps was analyzed by scanning electron microscopy, after sectioning the restorations and preparing epoxy resin replicas. DC (n = 3) was obtained by FT-Raman spectroscopy on irradiated and non-irradiated composite surfaces. FS (n = 10) was measured by the three-point-bending test. KHN (n = 6) was measured after 24h dry storage and again after immersion in 100% ethanol solution for 24 h, to calculate PCL density. Data were analyzed by appropriate statistical analyses. Results. The pre-heated composite showed better MA than the room-temperature groups. A higher number of gaps were observed in the room-temperature groups, irrespective of the energy density, mainly in the axial wall (p < 0.05). Composite pre-heating and energy density did not affect the DC, FS and PCL (p > 0.05). Significance. Pre-heating the composite prior to light polymerization similar in a clinical situation did not alter the mechanical properties and monomer conversion of the composite, but provided enhanced composite adaptation to cavity walls. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. Stress development at the tooth/restoration interface is one of the most important reasons for failure of adhesive restorations. The aim of this study was to evaluate the influence of BisGMA/TEGDMA (B/T) and UDMA/TEGDMA (U/T) ratios on polymerization stress (PS) and on the variables related to its development: degree of conversion (DC), polymerization maximum rate (Rp(max)), volumetric shrinkage (VS), elastic modulus (E), stress relaxation (SR) and viscosity of experimental composites. Method. Composites were formulated containing B/T or U/T in mol% ratios of 2: 8, 3: 7, 4: 6, 5: 5, 6: 4, 7: 3 and 8: 2, and 15 wt% of fumed silica. PS was determined with a universal testing machine. VS was measured with a linometer. E and SR were obtained in three-point bending. DC and Rp(max) were determined by real time NIR spectroscopy and viscosity was measured in viscometer. Data were submitted to one-way ANOVA, Tukey test (alpha = 0.05%) and regression analyses. Results. PS, VS, E and DC decreased and viscosity and Rp(max) increased with base monomer content in both series. PS showed strong correlation with VS, DC and viscosity. PS, VS and DC were higher and viscosity was lower for UDMA-based materials. Significance. Reduced viscosity, kinetics parameters and molecular characteristics led UDMA-based composites to elevated conversion and relatively lower PS at lower TEGDMA contents, compared to B/T composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The role of inorganic content on physical properties of resin composites is well known. However, its influence on polymerization stress development has not been established. The aim of this investigation was to evaluate the influence of inorganic fraction on polymerization stress and its determinants, namely, volumetric shrinkage, elastic modulus and degree of conversion. Methods. Eight experimental composites containing 1:1 BisGMA (bisphenylglycidyl dimethacrylate): TEGDMA (triethylene glycol dimethacrylate) (in mol) and barium glass at increasing concentrations from 25 to 60 vol.% (5% increments) were tested. Stress was determined in a universal test machine using acrylic as bonding substrate. Nominal polymerization stress was obtained diving the maximum load by the cross-surface area. Shrinkage was measured using a water picnometer. Elastic modulus was obtained by three-point flexural test. Degree of conversion was determined by FT-Raman spectroscopy. Results. Polymerization stress and shrinkage showed inverse relationships with filler content (R(2) = 0.965 and R(2) = 0.966, respectively). Elastic modulus presented a direct correlation with inorganic content (R(2) = 0.984). Degree of conversion did not vary significantly. Polymerization stress showed a strong direct correlation with shrinkage (R(2) = 0.982) and inverse with elastic modulus (R(2) = 0.966). Significance. High inorganic contents were associated with low polymerization stress values, which can be explained by the reduced volumetric shrinkage presented by heavily filled composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dentin bonding performed with hydrophobic resins using ethanol-wet bonding should be less susceptible to degradation but this hypothesis has never been validated. Objectives. This in vitro study evaluated stability of resin-dentin bonds created with an experimental three-step BisGMA/TEGDMA hydrophobic adhesive or a three-step hydrophilic adhesive after one year of accelerated aging in artificial saliva. Methods. Flat surfaces in mid-coronal dentin were obtained from 45 sound human molars and randomly divided into three groups (n = 15): an experimental three-step BisGMA/TEGDMA hydrophobic adhesive applied to ethanol (ethanol-wet bonding-GI) or water-saturated dentin (water-wet bonding-GII) and Adper Scotchbond Multi-Purpose [MP-GIII] applied, according to manufacturer instructions, to water-saturated dentin. Resin composite crowns were incrementally formed and light-cured to approximately 5 mm in height. Bonded specimens were stored in artificial saliva at 37 degrees C for 24h and sectioned into sticks. They were subjected to microtensile bond test and TEM analysis immediately and after one year. Data were analyzed with two-way ANOVA and Tukey tests. Results. MP exhibited significant reduction in microtensile bond strength after aging (24 h: 40.6 +/- 2.5(a); one year: 27.5 +/- 3.3(b); in MPa). Hybrid layer degradation was evident in all specimens examined by TEM. The hydrophobic adhesive with ethanol-wet bonding preserved bond strength (24 h: 43.7 +/- 7.4(a); one year: 39.8 +/- 2.7(a)) and hybrid layer integrity, with the latter demonstrating intact collagen fibrils and wide interfibrillar spaces. Significance. Coaxing hydrophobic resins into acid-etched dentin using ethanol-wet bonding preserves resin-dentin bond integrity without the adjunctive use of MMPs inhibitors and warrants further biocompatibility and patient safety`s studies and clinical testing. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. The goal of this paper is to undertake a literature search collecting all dentin bond strength data obtained for six adhesives with four tests ( shear, microshear, tensile and microtensile) and to critically analyze the results with respect to average bond strength, coefficient of variation, mode of failure and product ranking. Method. A PubMed search was carried out for the years between 1998 and 2009 identifying publications on bond strength measurements of resin composite to dentin using four tests: shear, tensile, microshear and microtensile. The six adhesive resins were selected covering three step systems ( OptiBond FL, Scotch Bond Multi-Purpose Plus), two-step (Prime & Bond NT, Single Bond, Clear. l SE Bond) and one step (Adper Prompt L Pop). Results. Pooling results from 147 references showed an ongoing high scatter in the bond strength data regardless which adhesive and which bond test was used. Coefficients of variation remained high (20-50%) even with the microbond test. The reported modes of failure for all tests still included high number of cohesive failures. The ranking seemed to be dependant on the test used. Significance. The scatter in dentin bond strength data remains regardless which test is used confirming Finite Element Analysis predicting non-uniform stress distributions due to a number of geometrical, loading, material properties and specimens preparation variables. This reopens the question whether, an interfacial fracture mechanics approach to analyze the dentin - adhesive bond is not more appropriate for obtaining better agreement among dentin bond related papers. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.