77 resultados para Cortical and cerebellar astroglia
Resumo:
We have observed in previous studies that 6-hydroxydopamine (6-OHDA)-induced lesions in the nigrostriatal dopamine (DA) system promote increases of the astroglial basic fibroblast growth factor (FGF-2, bFGF) synthesis in the ascending DA pathways, event that could be modified by adrenosteroid hormones. Here, we first evaluated the changes of microglial reactivity in relation to the FGF-2-mediated trophic responses in the lesioned nigrostriatal DA system. 6-OHDA was injected into the left side of the rat substantia nigra. The OX42 immunohistochemistry combined with stereology showed the time course of the microglial activation. The OX42 immunoreactivity (IR) was already increased in the pars compacta of the substantia nigra (SNc) and ventral tegmental area (VTA) 2 h after the 6-OHDA injection, peaked on day 7, and remained increased on the 14th day time-interval. In the neostriatum, OX42 immunoreactive (ir) microglial profiles increased at 24 h, peaked at 72 h, was still increased at 7 days but not 14 days after the 6-OHDA injection. Two-colour immunofluorescence analysis of the tyrosine hydroxylase (TH) and OX42 IRs revealed the presence of small patches of TH IR within the activated microglia. A decreased FGF-2 IR was seen in the cytoplasm of DA neurons of the SNc and VTA as soon as 2 h after 6-OHDA injection. The majority of the DA FGF-2 ir cells of these regions had disappeared 72 h after neurotoxin. The astroglial FGF-2 IR increased in the SNc and VTA, which peaked on day 7. Two-colour immunofluorescence and immunoperoxidase analyses of the FGF-2 and OX42 IRs revealed no FGF-2 IR within the reactive or resting microglia. Second, we have evaluated in a series of biochemical experiments whether adrenocortical manipulation can interfere with the nigral lesion and the state of local astroglial reaction, looking at the TH and GFAP levels respectively. Rats were adrenalectomized (ADX) and received a nigral 6-OHDA stereotaxical injection 2 days later and sacrificed up to 3 weeks after the DA lesion. Western blot analysis showed time-dependent decrease and elevation of TH and GFAP levels, respectively, in the lesioned versus contralateral midbrain sides, events potentiated by ADX and worsened by corticosterone replacement. ADX decreased the levels of FGF-2 protein (23 kDa isoform) in the lesioned side of the ventral midbrain compared contralaterally. The results indicate that reactive astroglia, but not reactive microglia, showed an increased FGF-2 IR in the process of DA cell degeneration induced by 6-OHDA. However, interactions between these glial cells may be relevant to the mechanisms which trigger the increased astroglial FGF-2 synthesis and thus may be related to the trophic state of DA neurons and the repair processes following DA lesion. The findings also gave further evidence that adrenocortical hormones may regulate astroglial-mediated trophic mechanisms and wound repair events in the lesioned DA system that may be relevant to the progression of Parkinson`s disease.
Resumo:
Objectives: We studied the neuroimaging and neurophysiological aspects of 17 patients with midline facial defects with ocular hypertelorism (MFDH). Methods: The investigation protocol included a previous semistructured questionnaire about family history; gestational, neonatal, and postnatal development; and dysmorphologic and neurologic evaluation. Recognized monogenic disorders and individuals with other well-known conditions were excluded. All patients had high resolution magnetic resonance imaging (MRI) with multiplanar reconstruction (MPR) and routine electroencephalograms (EEGs). Results: We detected abnormalities in five patients whose MRIs had been previously reported as normal. MRI showed central nervous system (CNS) structural abnormalities in all patients, which included commissural alterations in 16/17 (94%), malformations of cortical development in 10/17 (58%), disturbances of neural tube closure in 7/17(42%), and posterior fossa anomalies in 6/17 (35%). Some patients had more than one type of malformation occurring at different stages of the embryonary process. EEGs showed epileptiform activity in 4/17 (24%) and background abnormalities in 5/17 (29%) of patients. Conclusion: This study clearly demonstrated the presence of structural and functional neurologic alterations related to MFDH. Therefore, the CNS anomalies cannot be considered incidental findings but an intrinsic part of this condition, which could be related to environmental effects and/or genetic mutations. These findings would provide a basis for future investigations on MFDH and should also be considered when planning rehabilitation.
Resumo:
Background: Amygdala-orbitofrontal cortical (OFC) functional connectivity (FC) to emotional stimuli and relationships with white matter remain little examined in bipolar disorder individuals (BD). Methods: Thirty-one BD (type 1; n = 17 remitted; n = 14 depressed) and 24 age- and gender-ratio-matched healthy individuals (HC) viewed neutral, mild, and intense happy or sad emotional faces in two experiments. The FC was computed as linear and nonlinear dependence measures between amygdala and OFC time series. Effects of group, laterality, and emotion intensity upon amygdala-OFC FC and amygdala-OFC FC white matter fractional anisotropy (FA) relationships were examined. Results: The BD versus HC showed significantly greater right amygdala-OFC FC (p <= .001) in the sad experiment and significantly reduced bilateral amygdala-OFC FC (p = .007) in the happy experiment. Depressed but not remitted female BD versus female HC showed significantly greater left amygdala-OFC FC (p = .001) to all faces in the sad experiment and reduced bilateral amygdala-OFC FC to intense happy faces (p = .01). There was a significant nonlinear relationship (p = .001) between left amygdala-OFC FC to sad faces and FA in HC. In BD, antidepressants were associated with significantly reduced left amygdala-OFC FC to mild sad faces (p = .001). Conclusions: In BD, abnormally elevated right amygdala-OFC FC to sad stimuli might represent a trait vulnerability for depression, whereas abnormally elevated left amygdala-OFC FC to sad stimuli and abnormally reduced amygdala-OFC FC to intense happy stimuli might represent a depression state marker. Abnormal FC measures might normalize with antidepressant medications in BD. Nonlinear amygdala-OFC FC-FA relationships in BID and HC require further study.
Resumo:
To examine abnormal patterns of frontal cortical-subcortical activity in response to emotional stimuli in euthymic individuals with bipolar disorder type I in order to identify trait-like, pathophysiologic mechanisms of the disorder. We examined potential confounding effects of total psychotropic medication load and illness variables upon neural abnormalities. We analyzed neural activity in 19 euthymic bipolar and 24 healthy individuals to mild and intense happy, fearful and neutral faces. Relative to healthy individuals, bipolar subjects had significantly increased left striatal activity in response to mild happy faces (p < 0.05, corrected), decreased right dorsolateral prefrontal cortical (DLPFC) activity in response to neutral, mild and intense happy faces, and decreased left DLPFC activity in response to neutral, mild and intense fearful faces (p < 0.05, corrected). Bipolar and healthy individuals did not differ in amygdala activity in response to either emotion. In bipolar individuals, there was no significant association between medication load and abnormal activity in these regions, but a negative relationship between age of illness onset and amygdala activity in response to mild fearful faces (p = 0.007). Relative to those without comorbidities, bipolar individuals with comorbidities showed a trend increase in left striatal activity in response to mild happy faces. Abnormally increased striatal activity in response to potentially rewarding stimuli and decreased DLPFC activity in response to other emotionally salient stimuli may underlie mood instabilities in euthymic bipolar individuals, and are more apparent in those with comorbid diagnoses. No relationship between medication load and abnormal neural activity in bipolar individuals suggests that our findings may reflect pathophysiologic mechanisms of the illness rather than medication confounds. Future studies should examine whether this pattern of abnormal neural activity could distinguish bipolar from unipolar depression.
Resumo:
Brain excitability diseases like epilepsy constitute one factor that influences brain electrophysiological features. Cortical spreading depression (CSD) is a phenomenon that can be altered by changes in brain excitability. CSD propagation was presently characterized in adult mate and female rats from a normal Wistar strain and from a genetically audiogenic seizure-prone strain, the Wistar audiogenic rat (WAR), both previously submitted (RAS(+)), or not (RAS(-)), to repetitive acoustic stimulation, to provoke audiogenic kindling in the WAR-strain. A gender-specific change in CSD-propagation was found. Compared to seizure-resistant animals, in the RAS- condition, mate and female WARs, respectively, presented CSD-propagation impairment and facilitation, characterized, respectively, by lower and higher propagation velocities (P<0.05). In contraposition, in the RAS(+) condition, mate and female WARs displayed, respectively, higher and tower CSD-propagation rates, as compared to the corresponding controls. In some Wistar and WAR females, we determined estrous cycle status on the day of the CSD-recording as being either estrous or diestrous; no cycle-phase-related differences in CSD-propagation velocities were detected. In contrast to other epilepsy models, such as Status Epilepticus induced by pilocarpine, despite the CSD-velocity reduction, in no case was CSD propagation blocked in WARs. The results suggest a gender-related, estrous cycle-phase-independent modification in the CSD-susceptibility of WAR rats, both in the RAS(+) and RAS(-) situation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the developing cerebellum, proliferation of granular neuroprogenitor (GNP) cells lasts until the early postnatal stages when terminal maturation of the cerebellar cortex occurs. GNPs are considered cell targets for neoplastic transformation, and disturbances in cerebellar GNP cell proliferation may contribute to the development of pediatric medulloblastoma. At the molecular level, proliferation of GNPs is regulated through an orchestrated action of the SHH, NOTCH, and WNT pathways, but the underlying mechanisms still need to be dissected. Here, we report that expression of the E2F1 transcription factor in rat GNPs is inversely correlated with cell proliferation rate during postnatal development, as opposed to its traditional SHH-dependent induction of cell cycle. Proliferation of GNPs peaked at postnatal day 3 (P3), with a subsequent continuing decrease in proliferation rates occurring until P12. Such gradual decline in proliferating neuroprogenitors paralleled the extent of cerebellum maturation confirmed by histological analysis with cresyl violet staining and temporal expression profiling of SHH, NOTCH2, and WNT4 genes. A time course analysis of E2F1 expression in GNPs revealed significantly increased levels at P12, correlating with decreased cell proliferation. Expression of the cell cycle inhibitor p18 (Ink4c) , a target of E2F1, was also significantly higher at P12. Conversely, increased E2F1 expression did not correlate with either SMAC/DIABLO and BCL2 expression profiles or apoptosis of cerebellar cells. Altogether, these results suggest that E2F1 may also be involved in the inhibition of GNP proliferation during rat postnatal development despite its conventional mitogenic effects.
Resumo:
Amyloid P-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappa B (NF-kappa B), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappa B activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta 1-40 (1 or 2 mu M) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappa B (1 mu M, 12 hr); both p50/p65 and p50/p50 NF-kappa B dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. AP at 1 mu M increased the expression of inhibitory protein I kappa B, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RTPCR assays. Collectively, these findings suggest that AP activates NF-kappa B by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta. (c) 2007 Wiley-Liss, Inc.
Resumo:
A structure-dynamic approach to cortical systems is reported which is based on the number of paths and the accessibility of each node. The latter measurement is obtained by performing self-avoiding random walks in the respective networks, so as to simulate dynamics, and then calculating the entropies of the transition probabilities for walks starting from each node. Cortical networks of three species, namely cat, macaque and humans, are studied considering structural and dynamical aspects. It is verified that the human cortical network presents the highest accessibility and number of paths (in terms of z-scores). The correlation between the number of paths and accessibility is also investigated as a mean to quantify the level of independence between paths connecting pairs of nodes in cortical networks. By comparing the cortical networks of cat, macaque and humans, it is verified that the human cortical network tends to present the largest number of independent paths of length larger than four. These results suggest that the human cortical network is potentially the most resilient to brain injures. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated bone response to a Ca- and P- enriched titanium (Ti) surface treated by a multiphase anodic spark deposition coating (BSP-AK). Two mongrel dogs received bilateral implantation of 3 Ti cylinders (4.1 x 12 mm) in the humerus, being either BSP-AK treated or untreated (machined - control). At 8 weeks postimplantation, bone fragments containing the implants were harvested and processed for histologic and histomorphometric analyses. Bone formation was observed in cortical area and towards the medullary canal associated to approximately 1/3 of implant extension. In most cases, in the medullary area, collagen fiber bundles were detected adjacent and oriented parallel to Ti surfaces. Such connective tissue formation exhibited focal areas of mineralized matrix lined by active osteoblasts. The mean percentages of bone-to-implant contact were 2.3 (0.0-7.2 range) for BSP-AK and 0.4 (0.0-1.3 range) for control. Although the Mann-Whitney test did not detect statistically significant differences between groups, these results indicate a trend of BSP-AK treated surfaces to support contact osteogenesis in an experimental model that produces low bone-to-implant contact values.
Resumo:
There are many studies that compare the accuracy of multislice (MSCT) and cone beam (CBCT) computed tomography for evaluations in the maxillofacial region. However, further studies comparing both acquisition techniques for the evaluation of simulated mandibular bone lesions are needed. The aim of this study was to compare the accuracy of MSCT and CBCT in the diagnosis of simulated mandibular bone lesions by means of cross sectional images and axial/MPR slices. Lesions with different dimensions, shape and locularity were produced in 15 dry mandibles. The images were obtained following the cross sectional and axial/MPR (Multiplanar Reconstruction) imaging protocols and were interpreted independently. CBCT and MSCT showed similar results in depicting the percentage of cortical bone involvement, with great sensitivity and specificity (p < 0.005). There were no significant intra- or inter-examiner differences between axial/MPR images and cross sectional images with regard to sensitivity and specificity. CBCT showed results similar to those of MSCT for the identification of the number of simulated bone lesions. Cross sectional slices and axial/MPR images presented high accuracy, proving useful for bone lesion diagnosis.
Resumo:
More than 140 years after the first description of Friedreich ataxia, autosomal recessive ataxias have become one of the more complex fields in Neurogenetics. Currently this group of diseases contains more than 20 clinical entities and an even larger number of associated genes. Some disorders are very rare, restricted to isolated populations, and others are found worldwide. An expressive number of recessive ataxias are treatable, and responsibility for an accurate diagnosis is high. The purpose of this review is to update the practitioner on clinical and pathophysiological aspects of these disorders and to present an algorithm to guide the diagnosis.
Resumo:
Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.
Resumo:
Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.
Resumo:
Background: Expectation is a very potent pain modulator in both humans and animals. There is evidence that pain transmission neurons are modulated by expectation preceding painful stimuli. Nonetheless, few studies have examined the influence of pain expectation on the pain-related neuronal activity and the functional connectivity within the central nociceptive network. Results: This study used a tone-laser conditioning paradigm to establish the pain expectation in rats, and simultaneously recorded the anterior cingulate cortex (ACC), the medial dorsal thalamus (MD), and the primary somatosensory cortex (SI) to investigate the effect of pain expectation on laser-induced neuronal responses. Cross-correlation and partial directed coherence analysis were used to determine the functional interactions within and between the recorded areas during nociceptive transmission. The results showed that under anticipation condition, the neuronal activity to the auditory cue was significantly increased in the ACC area, whereas those to actual noxious stimuli were enhanced in all the recorded areas. Furthermore, neuronal correlations within and between these areas were significantly increased under conditions of expectation compared to those under non-expectation conditions, indicating an enhanced synchronization of neural activity within the pain network. In addition, information flow from the medial (ACC and MD) to the lateral (SI cortex) pain pathway increased, suggesting that the emotion-related neural circuits may modulate the neuronal activity in the somatosensory pathway during nociceptive transmission. Conclusion: These results demonstrate that the nociceptive processing in both medial and lateral pain systems is modulated by the expectation of pain.
Resumo:
Hemorrhage in regions remote from the site of initial intracranial operations is rare, but may be fatal. Postoperative cerebellar hemorrhage as a complication of supratentorial surgery, with a radiological appearance known as zebra sign, is an increasingly recognized clinical entity and is associated mainly with vascular neurosurgery or temporal lobe resection. The pathophysiology remains unclear. Three cases of remote cerebellar hematoma occurred after neck clipping of anterior communicating artery aneurysms. All patients had similar clinical findings and underwent pterional craniotomy with the head in accentuated extension. One patient died and the two were discharged without symptoms. Cerebellar hemorrhage probably has a multifactorial origin involving positioning associated with abundant cerebrospinal fluid drainage causing cerebellar sag with resultant vein stretching and bleeding, and use of aspirin or other antiplatelet agents.