75 resultados para Computerized tomography
Resumo:
Objectives Little information is available on the molecular events that occur during graft incorporation over time. The calvarial bone (Cb) grafts have been reported to produce greater responses compared with other donor regions in maxillofacial reconstructions, but the scientific evidences for this are still lacking. The objectives of this study are (1) to study the morphological pattern of Cb onlay bone grafts and compare them with the biological events through immunohistochemical responses and (2) to establish the effects of perforations in maintaining the volume and bone density of the receptor bed. Material and methods Sixty New Zealand White rabbits were submitted to Cb onlay bone grafts on the mandible. In 30 rabbits, the receptor bed was perforated (perforated group), while for the remaining animals the bed was kept intact (non-perforated group). Six animals from each group were sacrificed at 5, 7, 10, 20 and 60 days after surgery. Histological sections from the grafted area were prepared for immunohistochemical and histological analyses. Immuno-labeling was found for proteins Osteoprotegerin (OPG), receptor activator of nuclear factor-kappa beta ligand (RANKL), alkaline phosphatase (ALP), osteopontin (OPN), vascular endothelial growth factor (VEGF), tartrate-resistant acid phosphatase (TRAP), Type I collagen (COL I) and osteocalcin (OC). The tomography examination [computerized tomography (CT) scan] was conducted just after surgery and at the sacrifice. Results The histological findings revealed that the perforations contributed to higher bone deposition during the initial stages at the graft-receptor bed interface, accelerating the graft incorporation process. The results of the CT scan showed lower resorption for the perforated group (P < 0.05), and both groups showed high bone density rates at 60 days. This set of evidences is corroborated by the immunohistochemical outcomes indicating that proteins associated with revascularization and osteogenesis (VEGF, OPN, TRAP and ALP) were found in higher levels in the perforated group. Conclusions These findings indicate that the bone volume of calvarial grafts is better maintained when the receptor bed is perforated, probably resulting from more effective graft revascularization and greater bone deposition. The process of bone resorption peaked between 20 and 60 days post-operatively in both groups although significantly less in the perforated group. To cite this article:Pedrosa Jr WF, Okamoto R, Faria PEP, Arnez MFM, Xavier SP, Salata LA. Immunohistochemical, tomographic and histological study on onlay bone grafts remodeling. Part II: calvarial bone.Clin. Oral Impl. Res. 20, 2009; 1254-1264.doi: 10.1111/j.1600-0501.2009.01747.x.
Resumo:
Immediate loading of dental implants shortens the treatment time and makes it possible to give the patient an esthetic appearance throughout the treatment period. Placement of dental implants requires precise planning that accounts for anatomic limitations and restorative goals. Diagnosis can be made with the assistance of computerized tomographic scanning, but transfer of planning to the surgical field is limited. Recently, novel CAD/CAM techniques such as stereolithographic rapid prototyping have been developed to build surgical guides in an attempt to improve precision of implant placement. The aim of this case report was to show a modified surgical template used throughout implant placement as an alternative to a conventional surgical guide.
Resumo:
Objective. To evaluate the periapical repair after root canal treatment in the teeth of dogs using CT and conventional radiography and to compare these findings with the gold standard microscopic evaluation. Study design. The animals were divided into three groups according to endodontic treatment performed: Group 1, single-visit endodontic treatment in teeth without apical periodontitis; Group 2, single-visit endodontic treatment in teeth with apical periodontitis; and Group 3, endodontic treatment in teeth with apical periodontitis using calcium hydroxide as a root canal dressing. Group 4 consisted of teeth with apical periodontitis not submitted to root canal treatment and Group 5 consisted of healthy teeth without periapical disease. Radiographic, tomographic, and microscopic evaluations were performed by blind examiners. At 180 days experimental time, CT and radiographic measurements of periapical disease were compared with the gold standard microscopic measurement using intraclass correlation coefficient. Intergroup comparisons considering different methods of periapical lesions measurement or different clinical protocols of root canal treatment were performed by Kruskal Wallis test followed by Dunn. Integrity of lamina dura, presence of radiolucent areas, and presence of root resorption were analyzed by Fisher`s exact test. Results. There was discontinuity of the lamina dura and CPD in all teeth from Groups 2, 3, and 4 evaluated by tomography and radiography 45 days after CPD induction. Radiographically, 180 days after root canal treatment, there was no periapical lesion in teeth from Groups 1 and 3, different from groups 2 and 4 (p < .05). The highest reduction in the CPD size was observed on Group 3 (p < .05). According to the tomographic results, there was decrease of the size of the CPD on Group 3 but not on Groups 2 or 4. However, in all groups the periapical lesions presented larger mesio-distal extension if compared with radiography, both 45 days after CPD induction and 180 days after root canal treatment. At 180 days, CT measurements were closely related to microscopic results (ICC = 0.95) differently from radiographic evaluation (ICC = 0.86). Conclusion. CT Scan evaluation of periapical repair following root canal treatment provided similar information than that obtained by microscopic analysis, whereas radiographic evaluation underestimated the size do periapical lesion. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108:796-805)
Resumo:
The determination of the success of endodontic treatment has been often discussed based on outcome obtained by periapical radiography. The aim of this study was to verify the influence of intracanal post on apical periodontitis detected by cone-beam computed tomography (CBCT). A consecutive sample of 1020 images (periapical radiographs and CBCT scans) taken from 619 patients (245 men; mean age, 50.1 years) between February 2008 and September 2009 were used in this study. Presence and intracanal post length (short, medium and long) were associated with apical periodontitis (AP). Chi-square test was used for statistical analyses. Significance level was set at p<0.01. The kappa value was used to assess examiner variability. From a total of 591 intracanal posts, AP was observed in 15.06%, 18.78% and 7.95% using periapical radiographs, into the different lengths, short, medium and long, respectively (p=0.466). Considering the same posts length it was verified AP in 24.20%, 26.40% and 11.84% observed by CBCT scans, respectively (p=0.154). From a total of 1,020 teeth used in this study, AP was detected in 397 (38.92%) by periapical radiography and in 614 (60.19%) by CBCT scans (p<0.001). The distribution of intracanal posts in different dental groups showed higher prevalence in maxillary anterior teeth (54.79%). Intracanal posts lengths did not influenced AP. AP was detected more frequently when CBCT method was used.
Resumo:
This article describes and discusses a method to determine root curvature radius by using cone-beam computed tomography (CBCT). The severity of root canal curvature is essential to select instrument and instrumentation technique. The diagnosis and planning of root canal treatment have traditionally been made based on periapical radiography. However, the higher accuracy of CBCT images to identify anatomic and pathologic alterations compared to panoramic and periapical radiographs has been shown to reduce the incidence of false-negative results. In high-resolution images, the measurement of root curvature radius can be obtained by circumcenter. Based on 3 mathematical points determined with the working tools of Planimp® software, it is possible to calculate root curvature radius in both apical and coronal directions. The CBCT-aided method for determination of root curvature radius presented in this article is easy to perform, reproducible and allows a more reliable and predictable endodontic planning, which reflects directly on a more efficacious preparation of curved root canals.
Resumo:
Conventional radiography has shown limitation in acquiring image of the ATM region, thus, computed tomography (CT) scanning has been the best option to the present date for diagnosis, surgical planning and treatment of bone lesions, owing to its specific properties. OBJECTIVE: The aim of the study was to evaluate images of simulated bone lesions at the head of the mandible by multislice CT. MATERIAL AND METHODS: Spherical lesions were made with dental spherical drills (sizes 1, 3, and 6) and were evaluated by using multislice CT (64 rows), by two observers in two different occasions, deploying two protocols: axial, coronal, and sagittal images, and parasagittal images for pole visualization (anterior, lateral, posterior, medial and superior). Acquired images were then compared with those lesions in the dry mandible (gold standard) to evaluate the specificity and sensibility of both protocols. Statistical methods included: Kappa statistics, validity test and chi-square test. Results demonstrated the advantage of associating axial, coronal, and sagittal slices with parasagittal slices for lesion detection at the head of the mandible. RESULTS: There was no statistically significant difference between the types of protocols regarding a particular localization of lesions at the poles. CONCLUSIONS: Protocols for the assessment of the head of the mandible were established to improve the visualization of alterations of each of the poles of the mandible's head. The anterior and posterior poles were better visualized in lateral-medial planes while lateral, medial and superior poles were better visualized in the anterior-posterior plane.
Resumo:
There are many studies that compare the accuracy of multislice (MSCT) and cone beam (CBCT) computed tomography for evaluations in the maxillofacial region. However, further studies comparing both acquisition techniques for the evaluation of simulated mandibular bone lesions are needed. The aim of this study was to compare the accuracy of MSCT and CBCT in the diagnosis of simulated mandibular bone lesions by means of cross sectional images and axial/MPR slices. Lesions with different dimensions, shape and locularity were produced in 15 dry mandibles. The images were obtained following the cross sectional and axial/MPR (Multiplanar Reconstruction) imaging protocols and were interpreted independently. CBCT and MSCT showed similar results in depicting the percentage of cortical bone involvement, with great sensitivity and specificity (p < 0.005). There were no significant intra- or inter-examiner differences between axial/MPR images and cross sectional images with regard to sensitivity and specificity. CBCT showed results similar to those of MSCT for the identification of the number of simulated bone lesions. Cross sectional slices and axial/MPR images presented high accuracy, proving useful for bone lesion diagnosis.
Resumo:
There are many limitations to image acquisition, using conventional radiography, of the temporomandibular joint (TMJ) region. The Computed Tomography (CT) scan is a better option, due to its higher accuracy, for purposes of diagnosis, surgical planning and treatment of bone injuries. The aim of the present study was to analyze two protocols of cone beam computed tomography for the evaluation of simulated mandibular condyle bone lesions. Spherical lesions were simulated in 30 dry mandibular condyles, using dentist drills and drill bits sizes 1, 3 and 6. Each of the mandibular condyles was submitted to cone beam computed tomography (CBCT) using two protocols: 1) axial, coronal and sagittal multiplanar reconstruction (MPR); and 2) sagittal plus coronal slices throughout the longitudinal axis of the mandibular condyles. For these protocols, 2 observers analyzed the CBCT images independently, regarding the presence or not of injuries. Only one of the observers, however, performed on 2 different occasions. The results were compared to the gold standard, evaluating the percentage of agreement, degree of accuracy of CBCT protocols and observers' examination. The z test was used for the statistical analysis. The results showed there were no statistically significant differences between the 2 protocols. There was greater difficulty in the assessment of small-size simulated lesions (drill # 1). From the results of this study, it can be concluded that CBCT is an accurate tool for analyzing mandibular condyle bone lesions, with the MPR protocol showing slightly better results than the sagittal plus coronal slices throughout the longitudinal axis.
Resumo:
PURPOSE: To report an uncommon case of osteochondroma affecting the mandibular condyle of a young patient and to illustrate the important contributions of different imaging resources to the diagnosis and treatment planning of this lesion. CASE DESCRIPTION: A 24-year-old female patient with the chief complaint of an increasing facial asymmetry and pain in the left pre-auricular region, revealing a reduced mouth opening, mandibular deviation and posterior cross-bite over a period of 18 months. Panoramic radiography revealed an enlargement of the left condyle, whereas computed tomography (CT) sections and three-dimensional CT showed a well-defined bone growth arising from condylar neck. The scintigraphy exam showed an abnormal osteogenic activity in the left temporomandibular joint. The condyle was surgically removed and after 18 months follow-up the panoramic radiography and CT scans showed no signs of recurrence. CONCLUSION: Although osteochondroma is a benign bone tumor that rarely arises in cranial and maxillofacial region, it should be considered in the differential diagnosis of slow-growing masses of the temporomandibular area and the use of different imaging exams significantly contribute to the correct diagnosis and treatment planning of this pathological condition.
Resumo:
Three-dimensional spectroscopy techniques are becoming more and more popular, producing an increasing number of large data cubes. The challenge of extracting information from these cubes requires the development of new techniques for data processing and analysis. We apply the recently developed technique of principal component analysis (PCA) tomography to a data cube from the center of the elliptical galaxy NGC 7097 and show that this technique is effective in decomposing the data into physically interpretable information. We find that the first five principal components of our data are associated with distinct physical characteristics. In particular, we detect a low-ionization nuclear-emitting region (LINER) with a weak broad component in the Balmer lines. Two images of the LINER are present in our data, one seen through a disk of gas and dust, and the other after scattering by free electrons and/or dust particles in the ionization cone. Furthermore, we extract the spectrum of the LINER, decontaminated from stellar and extended nebular emission, using only the technique of PCA tomography. We anticipate that the scattered image has polarized light due to its scattered nature.
Resumo:
The main objective of this paper is to relieve the power system engineers from the burden of the complex and time-consuming process of power system stabilizer (PSS) tuning. To achieve this goal, the paper proposes an automatic process for computerized tuning of PSSs, which is based on an iterative process that uses a linear matrix inequality (LMI) solver to find the PSS parameters. It is shown in the paper that PSS tuning can be written as a search problem over a non-convex feasible set. The proposed algorithm solves this feasibility problem using an iterative LMI approach and a suitable initial condition, corresponding to a PSS designed for nominal operating conditions only (which is a quite simple task, since the required phase compensation is uniquely defined). Some knowledge about the PSS tuning is also incorporated in the algorithm through the specification of bounds defining the allowable PSS parameters. The application of the proposed algorithm to a benchmark test system and the nonlinear simulation of the resulting closed-loop models demonstrate the efficiency of this algorithm. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Resumo:
Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background/purpose The continuous advancement in cosmetic science has led to an increasing demand for the development of non-invasive, reliable scientific techniques directed toward claim substantiation, which is of utmost relevance, to obtain data regarding the efficacy and safety of cosmetic products. Methods In this work, we used the optical coherence tomography (OCT) technique to produce in vitro transversal section-images of human hair. We also compared the OCT signal before and after chemical treatment with an 18% w/w ammonium thioglycolate solution. Results The mean diameter of the medulla was 29 +/- 7 mu m and the hair diameter was 122 +/- 16 mu m in our samples of standard Afro-ethnic hair. A three-dimensional (3D) image was constructed starting from 601 cross-sectional images (slices). Each slice was taken in steps of 6.0 mu m at eight frames per second, and the entire 3D image was constructed in 60 s. Conclusion It was possible to identify, using the A-scan protocol, the principal structures: the cuticle, cortex and medulla. After chemical treatment, it was not possible to identify the main structures of hair fiber due to index matching promoted by deleterious action of the chemical agent.