62 resultados para Computer generated works


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The Brazilian Amazon has suffered impacts from non-sustainable economic development, especially owing to the expansion of agricultural commodities into forest areas. The Tangara da Serra region, located in the southern of the Legal Amazon, is characterized by non-mechanized sugar cane production. In addition, it lies on the dispersion path of the pollution plume generated by biomass burning. The aim of this study was to assess the genotoxic potential of the atmosphere in the Tangara da Serra region, using Tradescantia pallida as in situ bioindicator. Methods: The study was conducted during the dry and rainy seasons, where the plants were exposed to two types of exposure, active and passive. Results: The results showed that in all the sampling seasons, irrespective of exposure type, there was an increase in micronucleus frequency, compared to control and that it was statistically significant in the dry season. A strong and significant relationship was also observed between the increase in micronucleus incidence and the rise in fine particulate matter, and hospital morbidity from respiratory diseases in children. Conclusions: Based on the results, we demonstrated that pollutants generated by biomass burning in the Brazilian Amazon can induce genetic damage in test plants that was more prominent during dry season, and correlated with the level of particulates and elevated respiratory morbidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, 222 genome survey sequences were generated for Trypanosoma rangeli strain P07 isolated from an opossum (Didelphis albiventris) in Minas Gerais State, Brazil. T. rangeli sequences were compared by BLASTX (Basic Local Alignment Search Tool X) analysis with the assembled contigs of Leishmania braziliensis, Leishmania infantum, Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Results revealed that 82% (182/222) of the sequences were associated with predicted proteins described, whereas 18% (40/222) of the sequences did not show significant identity with sequences deposited in databases, suggesting that they may represent T. rangeli-specific sequences. Among the 182 predicted sequences, 179 (80.6%) had the highest similarity with T. cruzi, 2 (0.9%) with T. brucei, and 1 (0.5%) with L. braziliensis. Computer analysis permitted the identification of members of various gene families described for trypanosomatids in the genome of T. rangeli, such as trans-sialidases, mucin-associated surface proteins, and major surface proteases (MSP or gp63). This is the first report identifying sequences of the MSP family in T. rangeli. Multiple sequence alignments showed that the predicted MSP of T. rangeli presented the typical characteristics of metalloproteases, such as the presence of the HEXXH motif, which corresponds to a region previously associated with the catalytic site of the enzyme, and various cysteine and proline residues, which are conserved among MSPs of different trypanosomatid species. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of MSP transcripts in epimastigote forms of T. rangeli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The survey is aimed at critically reviewing information on the UVA-mediated oxidative reactions to cellular components with emphasis on DNA as the result of mostly photosensitized pathways. It appears clearly that UVA radiation is relatively much more efficient than UVB photons in inducing oxidative processes. The main UVA-induced oxidative degradation pathways of DNA are reported and discussed mechanistically. They are mostly rationalized in terms of a major contribution of singlet molecular oxygen ((1)O(2)) and to a lesser extent of hydroxyl radical ((center dot)OH), that in the latter case originates from Fenton-type reactions. This leads to the predominant formation of 8-oxo-7,8-dihydroguanine together with smaller amounts of oxidized pyrimidine bases and DNA strand breaks in UVA-irradiated cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of supplementary damping controllers to mitigate the effects of electromechanical oscillations in power systems is a highly complex and time-consuming process, which requires a significant amount of knowledge from the part of the designer. In this study, the authors propose an automatic technique that takes the burden of tuning the controller parameters away from the power engineer and places it on the computer. Unlike other approaches that do the same based on robust control theories or evolutionary computing techniques, our proposed procedure uses an optimisation algorithm that works over a formulation of the classical tuning problem in terms of bilinear matrix inequalities. Using this formulation, it is possible to apply linear matrix inequality solvers to find a solution to the tuning problem via an iterative process, with the advantage that these solvers are widely available and have well-known convergence properties. The proposed algorithm is applied to tune the parameters of supplementary controllers for thyristor controlled series capacitors placed in the New England/New York benchmark test system, aiming at the improvement of the damping factor of inter-area modes, under several different operating conditions. The results of the linear analysis are validated by non-linear simulation and demonstrate the effectiveness of the proposed procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with neural network (NN)-based gait pattern adaptation algorithms for an active lower-limb orthosis. Stable trajectories with different walking speeds are generated during an optimization process considering the zero-moment point (ZMP) criterion and the inverse dynamic of the orthosis-patient model. Additionally, a set of NNs is used to decrease the time-consuming analytical computation of the model and ZMP. The first NN approximates the inverse dynamics including the ZMP computation, while the second NN works in the optimization procedure, giving an adapted desired trajectory according to orthosis-patient interaction. This trajectory adaptation is added directly to the trajectory generator, also reproduced by a set of NNs. With this strategy, it is possible to adapt the trajectory during the walking cycle in an on-line procedure, instead of changing the trajectory parameter after each step. The dynamic model of the actual exoskeleton, with interaction forces included, is used to generate simulation results. Also, an experimental test is performed with an active ankle-foot orthosis, where the dynamic variables of this joint are replaced in the simulator by actual values provided by the device. It is shown that the final adapted trajectory follows the patient intention of increasing the walking speed, so changing the gait pattern. (C) Koninklijke Brill NV, Leiden, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper proposes a flexible consensus scheme for group decision making, which allows one to obtain a consistent collective opinion, from information provided by each expert in terms of multigranular fuzzy estimates. It is based on a linguistic hierarchical model with multigranular sets of linguistic terms, and the choice of the most suitable set is a prerogative of each expert. From the human viewpoint, using such model is advantageous, since it permits each expert to utilize linguistic terms that reflect more adequately the level of uncertainty intrinsic to his evaluation. From the operational viewpoint, the advantage of using such model lies in the fact that it allows one to express the linguistic information in a unique domain, without losses of information, during the discussion process. The proposed consensus scheme supposes that the moderator can interfere in the discussion process in different ways. The intervention can be a request to any expert to update his opinion or can be the adjustment of the weight of each expert`s opinion. An optimal adjustment can be achieved through the execution of an optimization procedure that searches for the weights that maximize a corresponding soft consensus index. In order to demonstrate the usefulness of the presented consensus scheme, a technique for multicriteria analysis, based on fuzzy preference relation modeling, is utilized for solving a hypothetical enterprise strategy planning problem, generated with the use of the Balanced Scorecard methodology. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems of distributed artificial intelligence can be powerful tools in a wide variety of practical applications. Its most surprising characteristic, the emergent behavior, is also the most answerable for the difficulty in. projecting these systems. This work proposes a tool capable to beget individual strategies for the elements of a multi-agent system and thereof providing to the group means on obtaining wanted results, working in a coordinated and cooperative manner as well. As an application example, a problem was taken as a basis where a predators` group must catch a prey in a three-dimensional continuous ambient. A synthesis of system strategies was implemented of which internal mechanism involves the integration between simulators by Particle Swarm Optimization algorithm (PSO), a Swarm Intelligence technique. The system had been tested in several simulation settings and it was capable to synthesize automatically successful hunting strategies, substantiating that the developed tool can provide, as long as it works with well-elaborated patterns, satisfactory solutions for problems of complex nature, of difficult resolution starting from analytical approaches. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcium carbonate industry generates solid waste products which, because of their high alkaline content (CaO, CaCO(3) and Ca (OH)(2)), have a substantial impact on the environment. The objectives of this study are to characterize and classify the solid waste products, which are generated during the hydration process of the calcium carbonate industry, according to ABNT`s NBR 10.000 series, and to determine the potential and efficiency of using these solid residues to correct soil acidity. Initially, the studied residue was submitted to gross mass, leaching, solubility, pH. X-ray Diffractometry, Inductive Coupled Plasma - Atomic Emission Spectrometry (ICP-AES), granularity and humidity analyses. The potential and efficiency of the residue for correcting soil acidity was determined by analysis of the quality attributes for soil correctives (PN, PRNT, Ca and Mg contents, granularity). Consequently, the results show that the studied residue may be used as a soil acidity corrective, considering that a typical corrective compound is recommended for each different type of soil. Additionally, the product must be further treated (dried and ground) to suit the specific requirements of the consumer market.