157 resultados para Collagen cross linking
Resumo:
The effect of ultraviolet radiation on the properties of poly(3-hydroxybutyrate) (PHB) was studied. The PHB investigated is produced from microbial fermentation using saccharose from sugarcane as the carbon source to the bacteria. The material was exposed to artificial UV-A radiation for 3, 6, 9 and 12 weeks. The photodegradation effect was followed by changes of molecular weight, of chemical and crystalline structures, of thermal, morphological, optical and mechanical properties, as well as of biodegradability. The experimental results showed that PHB undergoes both chain scission and cross-linking reactions, but the continuous decrease in its mechanical properties and the low amount of gel content upon UV exposure indicated that the scission reactions were predominant. Molar mass, melting temperature and crystallinity measurements for two layers of PHB samples with different depth suggested that the material has a strong degradation profile, which was attributed to its dark colour that restricted the transmission of light. Previous photodegradation initially delayed PHB biodegradability, due to the superficial increase in crystallinity seen with UV exposure. The possible reactions taking place during PHB photodegradation were presented and discussed in terms of the infrared and nuclear magnetic resonance spectra. A reference peak (internal standard) in the infrared spectra was proposed for PHB photodegradation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the effect of cerium (IV) ammonium nitrate (CAN) addition on the polymerization of bis-[triethoxysilyl]ethane (BTSE) film applied on carbon steel was studied. The electrochemical characterization of the films was carried out in 0.1 mol L(-1) NaCl solution by open-circuit potential measurements, anodic and cathodic polarization curves and electrochemical impedance spectroscopy (EIS). Morphological and chemical characterization were performed by atomic force microscopy (AFM), contact angle measurements, infrared-spectroscopy, nuclear magnetic resonance and thermogravimetric analysis. The results have clearly shown the improvement on the protective properties of the Ce(4+) modified film as a consequence of the formation of a more uniform and densely reticulated silane film. A mechanism is proposed to explain the accelerating role of Ce(4+) ions on the cross-linking of the silane layer. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work a new method for crosslinking ultra-thin films with potential applications in sensor systems is proposed. The films were produced by layer-by-layer (LbL) assembly using a conducting polymer, poly(o-ethoxyaniline) (POEA), alternated with a thermosetting resin, novolac-type phenolformaldehyde (PF), crosslinked by a simple thermal treatment. The PF resin served as both alternating and crosslinking agents. The films were characterized by Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetry (TG), desorption, doping/dedoping cycling and electrical measurements. The results showed that film architecture and crosslinking degree can be controlled by the conditions used for film deposition (number of bilayers, polymer concentration, pH, and deposition time), and crosslinking time. Moreover, this approach offers several advantages such as fast curing time and low cost, indicating that these films can be used to produce sensors with improved stability.
Resumo:
Phenothiazines (PTZ) are drugs widely used in the treatment of schizophrenia. Trifluoperazine, a piperazinic PTZ derivative, has been described as inhibitor of the mitochondrial permeability transition (MPT). We reported previously the antioxidant activity of thioridazine at relatively low concentrations associated to the inhibition of the MPT (Brit. J. Pharmacol., 2002;136:136-142). In this study, it was investigated the induction of MPT by PTZ derivatives at concentrations higher than 10 mu M focusing on the molecular mechanism involved. PTZ promoted a dose-response mitochondrial swelling accompanied by mitochondrial transmembrane potential dissipation and calcium release, being thioridazine the most potent derivative. PTZ-induced MPT was partially inhibited by CsA or Mg(2+) and completely abolished by the abstraction of calcium. The oxidation of reduced thiol group of mitochondrial membrane proteins by PTZ was upstream the VIP opening and it was not sufficient to promote the opening of PTP that only occurred when calcium was present in the mitochondrial matrix. EPR experiments using DMPO as spin trapping excluded the participation of reactive oxygen species on the PTZ-induced MPT. Since 117 give rise to cation radicals chemically by the action of peroxidases and cyanide inhibited the PTZ-induced swelling, we propose that VIZ bury in the inner mitochondrial membrane and the chemically generated 117 cation radicals modify specific thiol groups that in the presence of Ca(2+) result in MPT associated to cytochrome c release. These findings contribute for the understanding of mechanisms of MET induction and may have implications for the cell death induced by PTZ. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Monocrotaline (MCT) is a pyrrolizidine alkaloid present in plants of the genus Crotalaria that causes cytotoxicity and genotoxicity in animals and humans. It is well established that the toxicity of MCT results from its hepatic bioactivation to dehydromonocrotaline (DHM), an alkylating agent, but the exact mechanism of action remains unknown. In a previous study, we demonstrated DHM`s inhibition of mitochondrial NADH-dehydrogenase activity at micromolar concentrations, which is an effect associated with a significant reduction in ATP synthesis. As a follow-up study, we have evaluated the ability of DHM to induce mitochondrial permeability transition (MPT) and its associated processes in isolated rat liver mitochondria. In the presence of 10 mu M Ca(2+), DHM (50-250 mu M) elicited MPT in a concentration-dependent, but cyclosporine A-independent manner, as assessed by mitochondrial swelling, which is associated with mitochondrial Ca(2+) efflux and cytochrome c release. DHM (50-250 mu M) did not cause hydrogen peroxide accumulation but did deplete endogenous glutathione and NAD(P)H, while oxidizing protein thiol groups. These results potentially indicate the involvement of mitochondria, via apoptosis, in the well-documented cytotoxicity of monocrotaline. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The reconstitution of membrane proteins into liposomes is a useful tool to prepare antigenic components that induce immunity. We have investigated the influence of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol molar ratio on the incorporation of a GPI-protein from Leishmania amazonensis on liposomes and Langmuir monolayers. The latter system is a well behaved and practical model, for understanding the effect of variables such as surface composition and lipid packing on protein incorporation. We have found that the DPPC/cholesterol molar ratio significantly alters the incorporation of the GPI-protein. In the absence of cholesterol, reconstitution is more difficult and proteoliposomes cannot be prepared, which we correlated with disruption of the DPPC layer. Our results provide important information that Could be employed in the development of a vaccine system for this disease or be used to produce other GPI-systems for biotechnological application. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background Basophils and mast cells are the main target cells in chronic idiopathic urticaria (CIU). Besides the basopenia, intrinsic defects of the anti-IgE cross-linking signalling pathway of basophils have been described in CIU. Objectives We sought to investigate the profile of expression of activation markers on basophils of patients with CIU and to explore the effect of interleukin (IL)-3 priming upon anti-IgE cross-linking stimuli through expression of activation markers and basophil histamine releasability. Methods Evaluation of the surface expression of Fc epsilon RI alpha, CD63, CD203c and CD123 on whole blood basophils of patients with CIU undergoing autologous serum skin test (ASST) was performed by flow cytometry. The effect of pretreatment with IL-3 in the anti-IgE response was analysed by the expression of basophil activation markers and histamine release using enzyme-linked immunosorbent assay. Results Blood basophils of patients with CIU were reduced in number and displayed increased surface expression of Fc epsilon RI alpha, which was positively correlated with the IgE serum levels. Upregulation of expression of both surface markers CD203c and CD63 was verified on basophils of patients with CIU, regardless of ASST response. High expression of IL-3 receptor on basophils was detected only in ASST+ patients with CIU. Pretreatment with IL-3 upregulated CD203c expression concomitantly with the excreting function of blood basophils and induced a quick hyper-responsiveness to anti-IgE cross-linking on basophils of patients with CIU compared with healthy controls. Conclusions Basophils of patients with CIU showed an activated profile, possibly due to an in vivo priming. Functionally, basophils have high responsiveness to IL-3 stimulation, thereby suggesting that defects in the signal transduction pathway after IgE cross-linking stimuli are recoverable in subjects with chronic urticaria.
Resumo:
BACKGROUND AND PURPOSE The P2X receptor family consists of seven subunit types - P2X1-P2X7. All but P2X6 are able to assemble as homotrimers. In addition, various subunit permutations have been reported to form heterotrimers. Evidence for heterotrimer formation includes co-localization, co-immunoprecipitation and the generation of receptors with novel functional properties; however, direct structural evidence for heteromer formation, such as chemical cross-linking and single-molecule imaging, is available in only a few cases. Here we examined the nature of the interaction between two pairs of subunits - P2X2 and P2X4, and P2X4 and P2X7. EXPERIMENTAL APPROACH We used several experimental approaches, including in situ proximity ligation, co-immunoprecipitation, co-isolation on affinity beads, chemical cross-linking and atomic force microscopy (AFM) imaging. KEY RESULTS Both pairs of subunits co-localize upon co-transfection, interact intimately within cells, and can be co-immunoprecipitated and co-isolated from cell extracts. Despite this, chemical cross-linking failed to show evidence for heteromer formation. AFM imaging of isolated receptors showed that all three subunits had the propensity to form receptor dimers. This self-association is likely to account for the observed close interaction between the subunit pairs, in the absence of true heteromer formation. CONCLUSIONS AND IMPLICATIONS We conclude that both pairs of receptors interact in the form of distinct homomers. We urge caution in the interpretation of biochemical evidence indicating heteromer formation in other cases.
Resumo:
Objectives. This study evaluated the effect of composite pre-polymerization temperature and energy density on the marginal adaptation (MA), degree of conversion (DC), flexural strength (FS), and polymer cross-linking (PCL) of a resin composite (Filtek Z350, 3M/ESPE). Methods. For MA, class V cavities (4mmx2mmx2mm) were prepared in 40 bovine incisors. The adhesive system Adper Single Bond 2 (3M/ESPE) was applied. Before being placed in the cavities, the resin composite was either kept at room-temperature (25 degrees C) or previously pre-heated to 68 degrees C in the Calset (TM) device (AdDent Inc., Danbury, CT, USA). The composite was then light polymerized for 20 or 40s at 600mW/cm(2) (12 or 24 J/cm(2), respectively). The percentage of gaps was analyzed by scanning electron microscopy, after sectioning the restorations and preparing epoxy resin replicas. DC (n = 3) was obtained by FT-Raman spectroscopy on irradiated and non-irradiated composite surfaces. FS (n = 10) was measured by the three-point-bending test. KHN (n = 6) was measured after 24h dry storage and again after immersion in 100% ethanol solution for 24 h, to calculate PCL density. Data were analyzed by appropriate statistical analyses. Results. The pre-heated composite showed better MA than the room-temperature groups. A higher number of gaps were observed in the room-temperature groups, irrespective of the energy density, mainly in the axial wall (p < 0.05). Composite pre-heating and energy density did not affect the DC, FS and PCL (p > 0.05). Significance. Pre-heating the composite prior to light polymerization similar in a clinical situation did not alter the mechanical properties and monomer conversion of the composite, but provided enhanced composite adaptation to cavity walls. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Proteins contain hydrophilic groups, which can bind to water molecules through hydrogen bridges, resulting in water vapour adsorption. An increase in the degree of cross-linking can be a method to improve the cohesiveness force and functional properties of protein-based films. Thus, the objective of this work was to evaluate the effect of chemical treatment of gelatin with formaldehyde and glyoxal on the mechanical properties, water vapour permeability (WVP) and water vapour sorption characteristics of gelatin-based films. Films were produced using gelatin, with and without chemical treatment. The formaldehyde treatments caused a significant increase in the tensile strength and a reduction in the WVP of films. The Guggenheim-Anderson-De Boer and Halsey models could be used to model the sorption isotherms of films. It was observed that an increase in temperature produced a decrease in water sorption, and the chemical modifications did not affect the monolayer moisture content. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Rudgea jasminoides (Rubiaceae) is a tropical tree species native of the Atlantic Forest in the south of Brazil. Previous studies with leaf cell walls of R. jasminoides showed a different proportion of cross-linked glycans compared to what is usually reported for eudicots. However, due to the difficulties of working with whole plant organs, cell suspensions of R. jasminoides, consisting of predominantly undifferentiated cells with mainly primary cell walls, were used to examine cell walls and extracellular soluble polysaccharides (EP) released into the culture medium. Sugar composition and linkage analysis showed homogalacturonans, xylogalacturonans and arabinogalactans to be the predominant EP. In the cell wall, homogalacturonans and arabinogalactans are the major pectins, and xyloglucans and xylans are the major cross-linking glycans. The presence of xylogalacturonans in the R. jasminoides cell cultures seems to be related to the occurrence of a homogeneous cell suspension with loosely attached cells. Although all alkali extractions from the cell walls yielded amounts of xyloglucan that exceed those of the xylans, the latter was found in a proportion that is higher than what has been usually reported for primary cell walls of most eudicots. The xyloglucan from cell walls of cell suspension cultures of R. jasminoides has low fucosylation levels and high proportion of galactosyl residues, a branching pattern commonly found in storage cell-wall xyloglucans.
Resumo:
Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded-protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Impedance spectroscopy has been proven a powerful tool for reaching high sensitivity in sensor arrays made with nanostructured films in the so-called electronic tongue systems, whose distinguishing ability may be enhanced with sensing units capable of molecular recognition. In this study we show that for optimized sensors and bio-sensors the dielectric relaxation processes involved in impedance measurements should also be considered, in addition to an adequate choice of sensing materials. We used sensing units made from layer-by-layer (LbL) films with alternating layers of the polyeletrolytes, poly(allylamine) hydrochloride (PAH) and poly(vinyl sulfonate) (PVS), or LbL films of PAH alternated with layers of the enzyme phytase, all adsorbed on gold interdigitate electrodes. Surprisingly, the detection of phytic acid was as effective in the PVS/PAH sensing system as with the PAH/phytase system, in spite of the specific interactions of the latter. This was attributed to the dependence of the relaxation processes on nonspecific interactions such as electrostatic cross-linking and possibly on the distinct film architecture as the phytase layers were found to grow as columns on the LbL film, in contrast to the molecularly thin PAH/PVS films. Using projection techniques, we were able to detect phytic acid at the micromolar level with either of the sensing units in a data analysis procedure that allows for further optimization.
Resumo:
The use of liposomes to encapsulate materials has received widespread attention for drug delivery, transfection, diagnostic reagent, and as immunoadjuvants. Phospholipid polymers form a new class of biomaterials with many potential applications in medicine and research. Of interest are polymeric phospholipids containing a diacetylene moiety along their acyl chain since these kinds of lipids can be polymerized by Ultra-Violet (UV) irradiation to form chains of covalently linked lipids in the bilayer. In particular the diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DC8,9PC) can form intermolecular cross-linking through the diacetylenic group to produce a conjugated polymer within the hydrocarbon region of the bilayer. As knowledge of liposome structures is certainly fundamental for system design improvement for new and better applications, this work focuses on the structural properties of polymerized DC8,9PC:1,2-dimyristoyl-sn-glycero-3-phusphocholine (DMPC) liposomes. Liposomes containing mixtures of DC8,9PC and DMPC, at different molar ratios, and exposed to different polymerization cycles, were studied through the analysis of the electron spin resonance (ESR) spectra of a spin label incorporated into the bilayer, and the calorimetric data obtained from differential scanning calorimetry (DSC) studies. Upon irradiation, if all lipids had been polymerized, no gel-fluid transition would be expected. However, even samples that went through 20 cycles of UV irradiation presented a DSC band, showing that around 80% of the DC8,9PC molecules were not polymerized. Both DSC and ESR indicated that the two different lipids scarcely mix at low temperatures, however few molecules of DMPC are present in DC8,9PC rich domains and vice versa. UV irradiation was found to affect the gel fluid transition of both DMPC and DC8,9PC rich regions, indicating the presence of polymeric units of DC8,9PC in both areas, A model explaining lipids rearrangement is proposed for this partially polymerized system.
Resumo:
One pair of reactants, Cu(hfac)(2) = M and the hinge-flexible radical ligand 5-(3-N-tert-butyl-N-aminoxylphenyl)pyrimidine (3PPN = L), yields a diverse set of five coordination complexes: a cyclic loop M(2)L(1) dimer; a 1:1 cocrystal between an M(2)L(2) loop and an ML(2) fragment; a ID chain of M(2)L(2) loops linked by M; two 2D M(3)L(2) networks of (M-L)(n) chains crosslinked by M with different repeat length pitches; a 3D M(3)L(2) network of M(2)L(2) loops cross-linking (M-L)(n)-type chains with connectivity different from those in the 2D networks. Most of the higher dimensional complexes exhibit reversible, temperature-dependent spin-state conversion of high-temperature paramagnetic states to lower magnetic moment states having antiferromagnetic exchange within Cu-ON bonds upon cooling, with accompanying bond contraction. The 3D complex also exhibited antiferromagnetic exchange between Cu(II) ions linked in chains through pyrimidine rings.