19 resultados para Clinch River Breeder Reactor Demonstration Power Plant (Tenn.)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to assess the anaerobic degradation of black liquor with and without additional carbon sources. Batch experiments were conducted using black liquor, from an integrated pulp and paper mill adding ethanol, methanol and nutrients. The PCR/DGGE technique was used to characterize the structure of the microbial community. The addition of extra sources of carbon did not significantly influence the degradation of black liquor under the conditions evaluated and the microbial community was similar in all experiments. It was observed an increase in some members of the archaeal in reactors that had the best efficiencies for removal of black liquor (around 7.5%). Either ethanol or methanol can be used as co-substrates because the produce the same quantitative and qualitative effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing need to treat effluents contaminated with phenol with advanced oxidation processes (AOPs) to minimize their impact on the environment as well as on bacteriological populations of other wastewater treatment systems. One of the most promising AOPs is the Fenton process that relies on the Fenton reaction. Nevertheless, there are no systematic studies on Fenton reactor networks. The objective of this paper is to develop a strategy for the optimal synthesis of Fenton reactor networks. The strategy is based on a superstructure optimization approach that is represented as a mixed integer non-linear programming (MINLP) model. Network superstructures with multiple Fenton reactors are optimized with the objective of minimizing the sum of capital, operation and depreciation costs of the effluent treatment system. The optimal solutions obtained provide the reactor volumes and network configuration, as well as the quantities of the reactants used in the Fenton process. Examples based on a case study show that multi-reactor networks yield decrease of up to 45% in overall costs for the treatment plant. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we propose a mathematical model that describes the competition between two plant virus strains (MAV and PAV) for both the host plant (oat) and their aphid vectors. We found that although PAV is transmitted by two aphids and MAV by only one, this fact, by itself, does not explain the complete replacement of MAV by PAV in New York State during the period from 1961 through 1976; an interpretation that is in agreement with the theories of A. G. Power. Also, although MAV wins the competition within aphids, we assumed that, in 1961, PAV mutated into a new variant such that this new variant was able to overcome MAV within the plants during a latent period. As shown below, this is sufficient to explain the swap of strains; that is, the dominant MAV was replaced by PAV, also in agreement with Power`s expectations.