28 resultados para Canine neoplasia
Resumo:
Mutations in the Na+-HCO3- cotransporter NBC1 cause severe proximal tubular acidosis (pRTA) associated with ocular abnormalities. Recent studies have suggested that at least some NBC1 mutants show abnormal trafficking in the polarized cells. This study identified a new homozygous NBC1 mutation (G486R) in a patient with severe pRTA. Functional analysis in Xenopus oocytes failed to detect the G486R activity due to poor surface expression. In ECV304 cells, however, G486R showed the efficient membrane expression, and its transport activity corresponded to approximately 50% of wild-type (WT) activity. In Madin-Darby canine kidney (MDCK) cells, G486R was predominantly expressed in the basolateral membrane domain as observed for WT. Among the previously identified NBC1 mutants that showed poor surface expression in oocytes, T485S showed the predominant basolateral expression in MDCK cells. On the other hand, L522P was exclusively retained in the cytoplasm in ECV304 and MDCK cells, and functional analysis in ECV304 cells failed to detect its transport activity. These results indicate that G486R, like T485S, is a partial loss of function mutation without major trafficking abnormalities, while L522P causes the clinical phenotypes mainly through its inability to reach the plasma membranes. Multiple experimental approaches would be required to elucidate potential disease mechanism by NBC1 mutations.
Resumo:
The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.
Resumo:
The effect of ANG II on intracellular pH (pH(i)) recovery rate and AT(1) receptor translocation was investigated in transfected MDCK cells. The pHi recovery rate was evaluated by fluorescence microscopy using the fluorescent probe BCECF-AM. The human angiotensin II receptor isoform 1 (hAT(1)) translocation was analyzed by immunofluorescence and confocal microscope. Our data show that transfected cells in control situation have a pHi recovery rate of 0.219 +/- 0.017 pH U/min (n = 11). This value was similar to nontransfected cells [0.211 +/- 0.009 pH U/min (n = 12)]. Both values were significantly increased with ANG II (10(-9) M) but not with ANG II (10(-6) M). Losartan (10(-7) M) and dimethyl-BAPTA-AM (10(-7) M) decreased significantly the stimulatory effect of ANG II (10(-9) M) and induced an increase in Na+/H+ exchanger 1 (NHE-1) activity with ANG II (10(-6) M). Immunofluorescence studies indicated that in control situation, the hAT(1) receptor was predominantly expressed in cytosol. However, it was translocated to plasma membrane with ANG II (10(-9) M) and internalized with ANG II (10(-6) M). Losartan (10(-7) M) induced hAT(1) translocation to plasma membrane in all studied groups. Dimethyl-BAPTA-AM (10(-7) M) did not change the effect of ANG II (10(-9) M) on the hAT(1) receptor distribution but induced its accumulation at plasma membrane in cells treated with ANG II (10(-6) M). With ionomycin (10(-6) M), the receptor was accumulated in cytosol. The results indicate that, in MDCK cells, the effect of ANG II on NHE-1 activity is associated with ligand binding to AT(1) receptor and intracellular signaling events related to AT(1) translocation.
Resumo:
Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy and RET/PTC rearrangements represent key genetic events frequently associated to this cancer, enhancing proliferation and dedifferentiation by activation of the RET/PTC-RAS-BRAF-mitogen-activated protein kinase (MAPK) pathway. Recently, let-7 microRNA was found to reduce RAS levels in lung cancer, acting as a tumor suppressor gene. Here, we report that RET/PTC3 oncogenic activation in PCCL3 rat thyroid cells markedly reduces let-7f expression. Moreover, stable transfection of let-7 microRNA in TPC-1 cells, which harbor RET/PTC1 rearrangement, inhibits MAPK activation. As a result, let-7f was capable of reducing TPC-1 cell growth, and this might be explained, at least in part, by decreased messenger RNA (mRNA) expression of cell cycle stimulators such as MYC and CCND1 (cyclin D1) and increased P21 cell cycle inhibitor mRNA. In addition, let-7 enhanced transcriptional expression of molecular markers of thyroid differentiation such as TITF1 and TG. Thus, reduced expression of let-7f might be an essential molecular event in RET/PTC malignant transformation. Moreover, let-7f effects on thyroid growth and differentiation might attenuate neoplastic process of RET/PTC papillary thyroid oncogenesis through impairment of MAPK signaling pathway activation. This is the first functional demonstration of an association of let-7 with thyroid cancer cell growth and differentiation.
Resumo:
Melanoma is the most aggressive form of skin cancer, and its incidence has increased dramatically over the years. The murine B16F10 melanoma in syngeneic C57Bl/6 mice has been used as a highly aggressive model to investigate tumor development. Presently, we demonstrate in the B16F10-Nex2 subclone that silencing of SOCS-1, a negative regulator of Jak/Stat pathway, leads to reversal of the tumorigenic phenotype and inhibition of melanoma cell metastasis. SOCS-1 silencing with short hairpin RNA affected tumor growth and cell cycle regulation with arrest at the S phase with large-sized nuclei, reduced cell motility, and decreased melanoma cell invasion through Matrigel. A clonogenic assay showed that SOCS-1 acted as a modulator of resistance to anoikis. In addition, down-regulation of SOCS-1 decreased the expression of epidermal growth factor receptor ( mainly the phosphorylated-R), Ins-R alpha, and fibroblast growth factor receptor. In vivo, silencing of SOCS-1 inhibited subcutaneous tumor growth and metastatic development in the lungs. Because SOCS-1 is expressed in most melanoma cell lines and bears a relation with tumor invasion, thickness, and stage of disease, the present results on the effects of SOCS-1 silencing in melanoma suggest that this regulating protein can be a target of cancer therapy.
Resumo:
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin beta(13). It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The V(H) CDR3 peptide from mAb A4 and V(L) CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.
Resumo:
The septins are a family of conserved proteins involved in cytokinesis and cortical organization. An increasing amount of data implicates different septins in diverse pathological conditions including neurodegenerative disorders, neoplasia and infections. Human SEPT4 is a member of this family and its tissue-specific ectopic expression profile in colorectal and urologic cancer makes it a useful diagnostic biomarker. Thermal unfolding of the GTPase domain of SEPT4 (SEPT4-G) revealed an unfolding intermediate which rapidly aggregates into amyloid-like fibers under physiological conditions. In this study, we examined the effects of protein concentration, pH and metals ions on the aggregation process of recombinant SEPT4-G using a series of biophysical techniques, which were also employed to study chemical unfolding and stability. Divalent metal ions caused significant acceleration to the rate of SEPT4-G aggregation. Urea induced unfolding was shown to proceed via the formation of a partially unfolded intermediate state which unfolds further at higher urea concentrations. The intermediate is a compact dimer which is unable to bind GTR At 1 M urea concentration, the intermediate state was plagued by irreversible aggregation at temperatures above 30 degrees C. However, higher urea concentration resulted in a marked decay of the aggregation, indicating that the partially folded structures may be necessary for the formation of these aggregates. The results presented here are consistent with the recently determined crystal structure of human septins and shed light on the aggregation properties of SEPT4 pertinent to its involvement in neurodegenerative disease. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Soft tissue tumors represent a group of neoplasia with different histologic and biological presentations varying from benign, locally confined to very aggressive and metastatic tumors. The molecular mechanisms responsible for such differences are still unknown. The understanding of these molecular alterations mechanism will be critical to discriminate patients who need systemic treatment from those that can be treated only locally and could also guide the development of new drugs` against this tumors. Using 102 tumor samples representing a large spectrum of these tumors, we performed expression profiling and defined differentially expression genes that are likely to be involved in tumors that are locally aggressive and in tumors with metastatic potential. We described a set of 12 genes (SNRPD3, MEGF9, SPTAN-1, AFAP1L2, ENDOD1, SERPIN5, ZWINTAS, TOP2A, UBE2C, ABCF1, MCM2, and ARL6IP5) showing opposite expression when these two conditions were compared. These genes are mainly related to cell-cell and cell-extracellular matrix interactions and cell proliferation and might represent helpful tools for a more precise classification and diagnosis as well as potential drug targets.
Resumo:
Purpose: To evaluate the microvessel density by comparing the performance of anti-factor VIII-related antigen, anti-CD31 and, anti-CD34 monoclonal antibodies in breast cancer. Methods: Twenty-three postmenopausal women diagnosed with Stage II breast cancer submitted to definitive surgical treatment were evaluated. The monoclonal antibodies used were anti-factor VIII, anti-CD31 and anti-CD34. Microvessels were counted in the areas of highest microvessel density in ten random fields (200 x). The data were analyzed using the Kruskal-Wallis nonparametric test (p < 0.05). Results: Mean microvessel densities with anti-factor VIII, anti-CD31 and anti-CD34 were 4.16 +/- 0.38, 4.09 +/- 0.23 and 6.59 +/- 0.42, respectively. Microvessel density as assessed by anti-CD34 was significantly greater than that detected by anti-CD31 or anti-factor VIII (p < 0.0001). There was no statistically significant difference between anti-CD31 and anti-factor VIII (p = 0.4889). Conclusion: The density of stained microvessels was greater and staining was more intense with anti-CD34 compared to anti-CD31 and anti-factor VII-related antigen.
Resumo:
Objectives: Human papillomavirus (HPV) infection is a major risk factor for cervical disease. Using baseline data from the HIV-infected cohort of Evandro Chagas Clinical Research Institute at Fiocruz, Rio de Janeiro, Brazil, factors associated with an increased prevalence of HPV were assessed. Methods: Samples from 634 HIV-infected women were tested for the presence of HPV infection using hybrid capture 11 and polymerase chain reaction. Prevalence ratios (PR) were estimated using Poisson regression analysis with robust variance. Results: The overall prevalence of HPV infection was 48%, of which 94% were infected with a high-risk HPV. In multivariate analysis, factors independently associated with infection with high-risk HPV type were: younger age (<30 years of age; PR 1.5, 95% confidence interval (CI) 1.1-2.1), current or prior drug use (PR 1.3, 95% CI 1.0-1.6), self-reported history of HPV infection (PR 1.2, 95% CI 0.96-1.6), condom use in the last sexual intercourse (PR 1.3, 95% CI 1.1-1.7), and nadir CD4+ T-cell count <100 cells/mm(3) (PR 1.6, 95% CI 1.2-2.1). Conclusions: The estimated prevalence of high-risk HPV-infection among HIV-infected women from Rio de Janeiro, Brazil, was high. Close monitoring of HPV-related effects is warranted in all HIV-infected women, in particular those of younger age and advanced immunosuppression. (C) 2008 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Resumo:
The recovery and stability of DNA for the detection and genotyping of HPV in UCM-containing specimens, after exposure to denaturing reagents and stored for up to 2 years were evaluated. Samples were collected from 60 women who had cervical cytology specimens harboring cervical intraepithelial neoplasia (CIN) 2 or 3. All samples were stored in UCM and had been frozen at -20 degrees C following the addition of the denaturing reagent (sodium hydroxide) and the removal of the aliquot required for Hybrid Capture 2 testing for the identification of HPV DNA. The samples had been stored for 6, 12 and 24 months (20 samples for each storage time). HPV DNA extraction was performed according to a protocol designed specifically and the presence and quality of DNA was confirmed by human P-globin detection using the consensus primers G73 and G74. HPV DNA was amplified using the consensus primers PGMY09 and PGMY11, and reverse line-blot hybridization was used to detect type-specific amplicons for 37 HPV types. The DNA extracted from the denatured specimen was recovered in 57/60 (95%) of the samples. HPV DNA was detected in 56/57 (98%) of the recovered samples. Twenty-six of the 56 samples recovered (48%) were genotyped successfully. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Purpose: High-risk human papillomavirus (HPV) is the main etiologic factor for cervical cancer. The severity of HPV-associated cervical lesions has been correlated to the number of infiltrating macrophages. The objective of this work is to characterize the role of tumor-associated macrophages (TAM) on the immune cellular response against the tumor. Experimental Design: We used the HPV16 E6- and E7-expressing TC-1 mouse tumor model to study the effect of TAM on T-cell function in vitro, and depleted TAM, using clodronate-containing liposomes, to characterize its role in vivo. Results: TAM, characterized by the positive expression of CD45, F4/80, and CD11b, formed the major population of infiltrating tumor cells. TAM displayed high basal Arginase I activity, producing interleukin-10 (IL-10); they were resistant to iNOSll activity induction, therefore reversion to M1 phenotype, when stimulated in vitro with lipopolysaccharide/IFN gamma, indicating an M2 phentoype. In cultures of isolated TAM, TAM induced regulatory phenotype, characterized by IL-10 and Foxp3 expression, and inhibited proliferation of CD8 lymphocytes. In vivo, depletion of TAM inhibited tumor growth and stimulated the infiltration of tumors by HPV16 E7(49-57)-specific CD8 lymphocytes, whereas depletion of Gr1(+) tumor-associated cells had no effect. Conclusions: M2-like macrophages infiltrate HPV16-associated tumors causing suppression of antitumor T-cell response, thus facilitating tumor growth. Depletion or phenotype alteration of this population should be considered in immunotherapy strategies.
Resumo:
Several studies indicate that molecular variants of HPV-16 have different geographic distribution and risk associated with persistent infection and development of high-grade cervical lesions. In the present study, the frequency of HPV-16 variants was determined in 81 biopsies from women with cervical intraepithelial neoplasia grade III or invasive cervical cancer from the city of Belem, Northern Brazil. Host DNAs were also genotyped in order to analyze the ethnicity-related distribution of these variants. Ninie different HPV-16 LCR variants belonging to four phylogenetic branches were identified. Among these, two new isolates were characterized. The most prevalent HPV-16 variant detected was the Asian-American B-2,followed by the European B-12 and the European prototype. Infections by multiple variants were observed in both invasive cervical cancer and cervical intraepithelial neoplasia grade III cases. The analysis of a specific polymorphism within the E6 viral gene was performed in a subset of 76 isolates. The E6-350G polymorphism was significantly more frequent in Asian-American variants. The HPV-16 variability detected followed the same pattern of the genetic ancestry observed in Northern Brazil, with European, Amerindian and African roots. Although African ancestry was higher among women infected by the prototype, no correlation between ethnical origin and HPV-16 variants was found. These results corroborate previous data showing a high frequency of Asian-American variants in cervical neoplasia among women with multiethnic origin.